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On the Impact of Deterministic Chaos on Modern Science and the 
Philosophy of Science: Implications for the Philosophy of Technology? 

 
Theodor Leiber 

 University of Augsburg 
 
Philosophy relates everything to wisdom, but through the methods of science! (Immanuel Kant) 
 
1. Overview and Introduction: Deterministic Chaos, Challenge for Whom or What? 
 
The modern concept of deterministic chaos arises from the mathematical and physical 
investigation of the topological and dynamical properties of deterministic systems. The notion of 
deterministic chaos is frequently used in an increasing number of scientific as well as non-
scientific contexts, ranging from mathematics and the physics of dynamical systems to all sorts of 
complicated time evolutions, e.g., in chemistry, biology, physiology, economics, sociology, and 
even psychology. In this, the central epistemological impact of chaos research is on matters of 
prediction and computability of most nonlinear deterministic systems, while the various concepts 
of deterministic chaos in use do not constitute a new science, or a revolutionary change of the 
scientific world picture. Instead, chaos research provides a sort of toolbox of topological, 
perturbational, and numerical methods which are certainly useful for a more detailed analysis and 
understanding of such dynamical systems whose deterministic trajectories are, roughly speaking, 
endowed with the property of exponential sensitivity on initial conditions. Such a property, then, 
implies merely one, but a quantitatively strong type of effective or empirical limitation on long-
time computability and predictability, respectively. Several reasons are given for why the impact 
of deterministic chaos research on quantitative modelling in the analysis of social and 
technological processes seems to be rather limited. 
 
With respect to deterministic chaos, we distinguish between metaphysical, epistemological, and 
mathematical determinism. Epistemological determinism amounts to the working hypothesis of 
lawlikeness of processes—or, of the heuristic, theoretical, and empirical fruitfulness of lawlike 
scientific models. Mathematical determinism is given by the fundamental existence theorem of 
ordinary differential equations, i.e., the existence and uniqueness of a solution for any initial state. 
We take it that metaphysical determinism is a transcendent assumption neither provable nor 
refutable, because epistemological determinism is not strictly confirmable (because of the 
problem of induction); and mathematical determinism is an idealization which is not strictly 
confirmable empirically (because measurements are always given with finite precision and are 
endowed with noise). Whenever the term “chaos” appears in the following, it is meant (if not 
explicitly stated otherwise) to denote “deterministic chaos” in the sense of mathematical 
determinism of trajectories. 
 
Deterministic chaos has been in vogue now for more than a decade. Applications to problems 
long assumed to be quite regular and predictable, as well as to problems long intuitively known to 
be “chaotic” have been proposed, and quite a number of them successfully so. Meanwhile, the 
explanatory ambitions and applications of chaos research, more specifically of nonlinear 
dynamical system theory, cover many types of dynamical evolutions in the empirical sciences 
such as physics, chemistry, biology, economies, sociology, physiology, and psychology (Basar, 
1990; Duke and Pritchard, 1991; Haken, 1983; Küppers, 1996; Mainzer, 1997a; Mainzer, 1997b; 
Skarda and Freedman, 1987). Basically, the various applications of nonlinear systems theory try 
to utilize the results established in mathematical, and especially physical, chaos research and 
nonlinear dynamics, and they constitute the field of research where the basic impacts of 
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deterministic chaos are to be located. Thereby, interesting and sometimes illuminating 
quantitative and qualitative models, treatable by established mathematical methods, are provided 
even in traditionally non-mathematized sciences. 
 
A general lesson to be learned from the various phenomena of deterministic chaos in mathematics 
and physics simply is that—as may have been well known before the advent of modern chaos 
research—mathematical determinism, especially if it is assumed to imply long-time 
computability, is an idealization never achievable in the empirical world of actual modelling, 
measurements, and computations. More specifically, it follows from deterministic chaos research 
that any actual perturbation of a deterministic trajectory of a dynamical system is amplified 
exponentially in the course of time, and thereby long-time computability is strongly limited 
because of practical reasons. 
 
2. Deterministic Chaos in Mathematics and Physics 
 
The modern concept of deterministic chaos has its central bearings, success, and progress in the 
mathematics and physics of the topological and dynamical properties of deterministic systems. 
 
Different accounts or definitions of chaos have been around in the literature of the last several 
years. Not surprising but often ignored, there is, however, no general definition of deterministic 
chaos applicable to the majority of interesting cases (Leiber, 1996a, chap. 15; Leiber, 1997; 
Leiber, 1998a). 
 
It is only in the special case of the iteration of a function (e.g., the logistic function x→ax (1-x), 
x∈[0,1], a≥4) that there is agreement on the mathematical (actually topological) properties 
characteristic of deterministic chaos (Peitgen et al., 1994, chap. 1): (i) sensitive dependence on 
the initial conditions (SD); (ii) dynamical mixing in state space (MIX); (iii) periodic points lying 
dense in state space (DPP). Note that the mathematical definition of chaos, 
(MIX∧DPP∧SD):↔DC, presupposes the existence of a state space whose states are precisely 
localizable in principle, and it applies to closed systems. 
 
Moreover, while the chaos industry is still expanding, the interpretational practice, or meaning 
variance, of the term, “chaos,” varies a lot, and some scientists are even quite unhappy about the 
very notion of deterministic chaos itself which was accidentally introduced by Li and Yorke 
(1975). 
 
The distinguishing property of dynamical deterministic chaos is the chaotic long-time behavior of 
dynamical systems. Deterministic equations of bounded motion with few degrees of freedom give 
rise to complicated solution trajectories, (i) which do not exhibit any quasi-periodicities without 
any external disturbances, and (ii) which are extremely, i.e., exponentially, sensitive to small 
deviations in the initial conditions. 
 
For details about the chaotic mechanisms in Hamiltonian and dissipative dynamical systems (and 
also some graphical illustrations) see, e.g. (Leiber, 1996a, pp. 380-397; Thomas and Leiber, 
1994). In passing we may also note that despite the exponential sensitivity of individual 
deterministic trajectories in many cases there is some structural predictability possible, e.g., when 
Hamiltonian chaotic trajectories are enclosed by invariant tori in “almost” non-integrable 
Hamiltonian systems, or when the dissipative dynamics is contracted to relatively low-dimenional 
strange attractors. 
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The case of regular, i.e., long-time effectively computable, dynamics is given if the distance d(t) 
of neighboring trajectories is constant or grows algebraically in the course of time, 

 D~const or d~tα, 
 
with a system dependent constant α. This implies that the length of the computable time interval 
of the trajectories’s evolution also grows algebraically with the precision of initial data. The 
reason is that the N binary digits of the inital data are increasingly lost with the trajectories’s 
evolution because of the algebraic amplification of initial value and/or computational errors; i.e., 
in the regular case, on the order of N/2N bits per computational step are lost. 
 
In the case of chaotic, i.e., not effectively long-time computable, motion, neighboring trajectories 
diverge exponentially (exponential sensitivity), 
 
 D~exp(λ+t),  λ>0 
 
where  λ+ denotes the largest characteristic Lyapunov exponent. Accordingly, for the chaotic case 
the computable time interval, tc~1/λ+, merely grows logarithmically with increasing precision of 
initial data; per iteration, then, approximately one bit of initial data is lost. 
 
Therefore, in principle the empirical distinction of regular and chaotic dynamics in a numerical 
experiment is achievable by quantitative estimates: for the case of N-bit computing precision, in 
regular systems any computable correlation with initial data is lost after approximately 2N 
iterations, while in chaotic systems the same is true already after N iterations. At the same time it 
is to be noted, however, that dynamical chaos in the sense of limited long-time computability is a 
matter of degree. 
 
Besides the mathematical definition of chaos, which is applicable only to relatively simple 
mathematical systems (e.g., logistic function, tent map, and Bernoulli shift), and besides the 
characteristics of Hamiltonian and dissipative chaos, a number of methods have been invoked, 
especially in the physics of non-dissipative nonlinear dynamical systems, to characterize the 
degree of complexity, and, according to the increasing degree of dynamical instability or non-
predictability, a hierarchy of abstract dynamical systems has been established, roughly (i.e., 
neglecting intermediate degrees) ranging from (i) ergodicity, to (ii) mixing, and to (iii) K- and 
Bernoulli systems. (For definitions and technical details, see Batterman, 1991; Lichtenberg and 
Liebermann, 1983, chap. 5; Ornstein and Weiss, 1991.) Note that, unfortunately, it is widespread 
abuse to denote all of these types of dynamical instability by the same word, chaos. 
 
Whereas rigorous existence proofs for the properties of dense periodic points (DPP) and mixing 
(MIX) of mathematical chaos can only be given for very simple nonlinear systems, the 
overwhelming majority of dynamical systems, which are of interest in physics, and which are 
assumed to exhibit chaotic behavior, do not allow for comparable proofs. Therefore, such systems 
are investigated by means of a number of conceptually and empirically nonequivalent procedures 
(e.g., canonical perturbation theory, linear stability analysis, Lyapunov exponents, dynamical 
entropies, strange attractors, diffusion-like models), where in most cases numerical computer 
calculations play a decisive role. Almost everything known about strange attractors relies on 
computer numerics. (For detailed accounts, see, e.g., Buzug, 1994; Lichtenberg and Liebermann, 
1983; Peitgen et al., 1994, chap. 3; Tabor, 1989.) 
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3. Degrees of Predictability: Regular Versus Chaotic Motion 
 
Obviously, the question arises whether the mathematical and physical concepts of deterministic 
chaos can be reduced to a smallest common denominator, which is not only meaningful 
theoretically, but first of all empirically. A positive answer can be straightforwardly given in the 
framework of a correlation function concept of the predictability of dynamical systems. 
 
In the problem of predictability of dynamical evolutions of deterministic trajectories, actually 
three processes are involved, namely the observed onex(t), the model one y(t), and the 
hypothetically underlying real processz(t). Then, the mean-square error < η2> = <(x-y)2> as taken 
from finite empirical averaging provides a universally adopted measure for prediction accuracy, 
 

 
 
where j counts the different observations, and tj0 and tj0+ τ denote the starting instant and the time 
instant of measurements, respectively. It is assumed that the greater the number of observations 
performed the more faithful is the error estimate in Eq. (1). 
 
The degree of predictability can now be measured by a coefficient of correlation between the 
observed process and the model process at the time moment τ after observation has started: 
 

 
 
Since the initial value of prediction y0 is taken to be equal to x0, we have D(τ=0) = 1; empirically, 
with increasing τ the degree of predictability D reaches zero. Generally, the closer D(τ) to unity 
(from below) the more satisfactory the forecast, and the closer D(τ) to zero (from above) the 
larger the discrepancy between observation and prediction. The time span of predictable 
behaviour, τpred, is defined by D(τpred) = 0.5 which corresponds to the situation that the absolute 
error <η2> is of the same order as the observed process’s invariance <x2>: <η2> ≈ (<x2> + <y2>)/2 
≈ <x2>. 
 
While in the case of regular motion the mean-square prediction error grows algebraically 
 

 
 
in the case of deterministic chaos it grows exponentially 
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these noises is negligible while for the case of pure deterministic chaos we may omit noises other 
than perturbations of initial data due to finite precision in measurement and numerical 
computation. 
 
Equating the mean-square error <η2> with the observation variance <x2>, we can estimate the 
time of predictable behavior in terms of the specified signal-to-noise ratio SNR = <x2>/σν
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probability) to which no dynamical prediction model can be fitted. At the same
time, processes that are predictable for times exceeding the correlation time are to
be classed with partially determinate ones. 

In summary, any deterministic or stochastic process has a limited
predictability range stemming from inaccuracy of the model equation, perturbing
action of instrumentation or strength of measurement noise, fluctuations in the
system concerned, bifurcations in the course of evolution,  etc., and constraints
due to costs. Deterministic chaos in the sense of exponential instability of
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measurement noise, fluctuations in the system concerned, bifurcations in the course of evolution, 
etc., and constraints due to costs. Deterministic chaos in the sense of exponential instability of 
dynamical systems is a quantitatively severe limitation of the long-time predictability of 
deterministic systems, because any sort of error, deviation, or perturbation is amplified 
exponentially, see Eq. (3). 
 
Here, some remarks seem to be in order. Some physicists (possibly because of the lack of a 
generally applicable definition of deterministic chaos) seem to suggest that no specific distinction 
should be made between chaos and noise; i.e., deterministic chaos is just denoted as “low-
dimensional noise.” Since Boltzmann’s microscopic chaos, hyothetically underlying statistical 
mechanics (or the stochastic forces representing the heat bath), is not necessarily deterministically 
chaotic, however, such an extension of the concept of noise implies that, at least, we 
unnecessarily lose conceptual differentiation between two different mechanisms of stochasticity. 
 
Besides deterministic chaos there are, however, other severe limitations of computability, 
including physical limitations of realizability of computing machines (e.g., quantum uncertainty 
relation, heat dissipation); much more important are numerical untreatability and uncomputability 
(e.g., too high computational problem complexity); computer errors (e.g., hardware errors, 
software errors, algorithm errors). 
 
Untreatable problems are those which, depending on some system parameter, have exponentially 
growing algorithmic complexity; if the computational complexity is infinite for any problem 
formulation, conceivable to date, we call the system uncomputable. For a discussion of points (i) 
and (ii), and also a short survey on information-based complexity and computability problems in 
linear analysis, see Leiber (1996b, pp. 26-40). 
 
Note also that from the theory of recursive computability in classical linear analysis, to date, 
almost nothing is available about the computational complexity of nonlinear (i.e., potentially 
chaotic) problems. It is clear, however, that the class of numerically untreatable systems (which 
are not effectively algorithmically computable because of exponentially growing computational 
complexity) and the class of chaotic systems are not identical: every chaotic system is untreatable 
(i.e., not long-time computable) whereas untreatable problems are not necessarily chaotic (e.g., 
there exist a number of linear, non-chaotic problems which are untreatable; Leiber, 1996b, pp.36-
40). The deterministically chaotic systems constitute a true subset of the set of untreatable 
problems. Moreover, unique connections between dynamical system properties—e.g., 
nonlinearity, non-integrability, and dynamical instability on the one hand, and algorithmic 
complexity and limited long-time computability on the other hand—cannot be established. There 
are effectively treatable (i.e., algorithmically computable) systems which do not admit of a 
closed-form solution as a function of time (e.g., transcendental equations); there are nonlinear 
systems which are integrable (e.g., solitons); there are linear systems which are uncomputable, or 
untreatable (Leiber, 1996b, pp. 38-40); in the framework of mathematical ergodic theory it has 
been shown that algorithmic Kolmogorov complexity is not synonymous with dynamical 
instability (or “deterministic randomness; Batterman, 1996); also, exponential instability is 
compatible with well-posedness, i.e., with the existence of a closed-form solution. In summary, 
for the instability hierarchy of dynamical systems there is no comprehensive characterization 
available in terms of computability concepts. 
 
4. On the Epistemological Implications of Deterministic Chaos 
 
It is obvious that the modern concept(s) of deterministic chaos significantly change the traditional 
conceptual contents of the concept, “chaos.” (For an historic outlook to some traditional concepts 
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of chaos, see Leiber, 1996a.) 
 
In my opinion, however, the novelty and fundamental character of the epistemological 
implications of deterministic chaos are quite restricted. Nevertheless, the features of deterministic 
chaos, from a classical mechanics point of view, question a number of implicit assumptions of 
classical mechanical physics, the “mechanical world picture” of the 19th century, and some 
assumption of a positivistic philosophy of science. 
 

(i) Deterministic chaos can be conceived as a property of low-dimensional, nonlinear, 
deterministic systems with more than two state space dimensions, which are not subjected 
to any external stochastic perturbations and which are not effectively treatable by means of 
linear perturbation theory. Nonlinearity (i.e., non-validity of the superposition principle) is 
a necessary but not sufficient condition for deterministic chaos in the sense of exponential 
sensitivity to appear. (Perturbation theoretic methods have, however, proved very useful in 
the intimate neighborhood of Hamiltonian chaos, especially for establishing the KAM 
theorem; (Leiber, 1996a, pp. 380-385, 390-395.) 
 
(ii) In contradistinction to purely statistical models, chaotic dynamics can be partially 
subjected to quantitatively precise analyses other than probabilistic methods. At the same 
time, deterministic chaos research can be successfully applied only to systems with 
relatively few dimensions. For higher dimensional systems we usually have to invoke 
probabilistic modellings irrespective whether the underlying deterministic dynamics is 
chaotic or not; in systems with attractors of large dimension, naive arguments indicate that 
recurrence times are astronomical: 

  
Here is only weak contraction of the occupied phase space volume, and the mean 
recurrence time τ = Δi / λi »1 (i ≠ n), where Δi and λi denote the Luapunov exponents of the 
deterministic flux and the corresponding Poincaré map, respectively. Or, as John 
Guckenheimer has put it: “A likely bet is that most natural systems display either simple 
dynamics that are not chaotic or dynamics that are beyond the realm of low-dimensional 
chaotic attractors” (Guckenheimer, 1991, p. 7). Moreover, a quantitative argument given by 
Jean-Pierre Eckmann and David Ruelle (Ruelle, 1990, pp. 244 ff.) demonstrates that the 
(re-) construction of strange attractors from a time series by means of the Grassberger-
Procaccia algorithm is to be interpreted very cautiously: from purely theoretical 
considerations it follows that for such attractors, the correlation dimension ≤ 2 log10  N,  
where N is the number of utilized time series data. This implies that dimension estimates 
are only informative if they are well below 2 log10 N. In many cases presented in the 
literature, however, this is not the case (because usually N ≈ 1000 and the measured 
“dimensions” are of the order of 6): “The ‘proof’ that one has low dimensional dynamics is 
therefore inconclusive, and the suspicion is that the time evolutions under discussion do not 
correspond to low-dimensional [deterministic] dynamics. It is possible that interesting 
information can nevertheless be extracted from the time series examined, but this would 
probably require new ideas. In the meantime prudence is in order, and claims that one can 
predict the stock market—for instance—using the ideas of dynamical systems appear 
somewhat unrealistic” (Ruelle, 1990, p. 247). 

 
(iii) From a foundational point of view in physical theorizing there is some vague hope that 
in the framework of mathematical ergodic theory deterministic chaos might provide a 
micro-dynamical foundation of macro-properties as found in nonlinear non-equilibrium 
thermodynamics. The results established by the KAM theorem may be taken as providing a 
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possible route from integrable, reversible behavior to probabilistic, irreversible behavior in 
statistical mechanics; however, these are still purely qualitative arguments, and no one is 
able to explicitly deduce from chaotic dynamics the basic equation(s) of one of the 
thermodynamic approaches. 

 
(iv) Mathematical determinism is empirically rather meaningless, and the assumption that 
mathematical determinism should imply numerical long-time computability is simply 
misguided; a specifically illuminating case is the solution of the deterministic Hamiltonian 
N -body problem from celestial mechanics (Leiber, 1996a, pp. 390-395), where it can be 
shown explicitly that even a constructive solution, namely a globally convergent power 
series (Wang, 1991), can be useless from a practical point of view because the very slow 
convergence and the round-off errors make these series useless in numerical work. 
Deterministic chaos is, however, just one additional, quantitatively specific aspect 
strengthening such arguments, which state that mathematical determinism (theoretical or 
formal determinateness; traditionally sometimes called “absolute predictability”) and 
predictability (determinability; effective computability) of individual trajectories are clearly 
to be distinguished, even if there were no deterministic chaos at all. 

 
Note that Pierre Simon de Laplace equated mathematical determinism with absolute 
predictability, but only for the case of a super-intelligent being (later called the Laplacean demon) 
which would be able to know the initial conditions and interacting forces of a mechanical system 
with absolute precision, and which would in no way be limited physically. In modern terms; for 
an idealized infinite Turing machine, deterministic chaos would not even appear. 
 
For a discussion of the relations between determinism, deterministic chaos, and freedom, see 
Leiber (1998a). It is an immediate consequence that a correct deterministic nomological (DN) 
explanation (based on a deterministic law) does not necessarily constitute a potentially correct 
long-time prediction; the corresponding equivalence is only theoretically valid, namely if the 
initial data are known with arbitrary precision; especially in the case of deterministic chaos the 
initial data have to be known with precision increasing at least exponentially with the time 
interval to be predicted. Therefore, long-time effective numerical computability or empirical 
predictability can no longer count—in fact they never could count—as decisive criteria for the 
operationalization (or verification) of deterministic lawlikeness. 
 
From the SD-property in chaotic systems, and the unavoidable (initial value) measurement errors 
and computational deviations inherit in any computational process even of non-chaotic systems, it 
has been concluded that (neglecting Duhem-Quine holism for the case of an Allsatz) 
deterministically chaotic laws of motion (e.g., difference or differential equations) are not 
falsifiable (from computer experiments) in the strict sense (i.e., deterministically), but are only 
treatable by means of the usual statistical methods (Düsberg, 1995). This claim is, however, not 
strictly valid at least for two reasons: (i) In the cases where the Shadowing Lemma (Coven et al., 
1988; Peitgen et al., 1994, pp. 122 ff.) can be proved explicitly. (ii) Moreover, such a degree of 
non-falsifiability is only larger for chaotic systems because in the long-term they do allow only 
for probabilistic predictions, i.e., the predictions are of the type that the dynamic system after 
some time will be found in some infinitesimal intervaldx of the state space with probability p(x) 
dx, where the probability density p depends on the equation of motion considered (for an explicit 
example for the logistic equation, see Düsberg, 1995, p. 17), while non-falsifiability is 
nevertheless not completely negligible for non-chaotic systems, simply because mathematical 
determinism (including the reversibility and reproducibility of formal states) is an idealization 
which is not attainable by empirical science. Clearly, the difference between regular and chaotic 
systems is that for chaotic systems the reliability of predicted values decreases exponentially with 
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increasing prediction time span, while in regular systems it decreases merely algebraically. In this 
sense, on the observational level all dynamical systems exhibit the property of effective 
irreversibility, but to different degrees, which may be of considerable importance, however, for 
practical purposes. 
 
Also, deterministic chaos puts limitations on the feasibility of any theoretically intended reductive 
explanation which should be carried out via precise numerical computations of the system’s state; 
e.g., in the case of micro-reductions effective numerical untreatability may prevent the effective 
execution of an intended partial reduction because the reducing problem formulation may be 
numerically untreatable while the reduced problem formulation may not be (Leiber, 1998b). 
Research on deterministic chaos provides mathematical and numerical refinements with regard to 
the solution structure of nonlinear differential (and difference) equations with respect to their 
dynamical stability, with some loose connection to questions of their algorithmic computability; 
and thus, deterministic chaos in physics constitutes distinct methodological progress. Also, “The 
mathematical theory of dynamical systems forms a substrate for the construction of 
computational tools that allow us to explore complex dynamical models much more efficiently 
than we have done so far, whether or not the systems are chaotic” (Guckenheimer, 1991, p. 8). 
Physical chaos research however, does not constitute a new research programme, or novel theory 
of physics. The theoretical core or negative heuristic is still constituted by the axioms and 
theorems of classical mechanics. 
 
This is not to say that physical chaos research does not have its novelties, namely, its positive 
heuristic (investigate nonlinear systems with more complicated solution behavior); its novel 
predictions (e.g., homo- and heteroclinic points and related complicated orbits in Hamiltonian 
chaos; strange attractors of different types in dissipative chaos); and its novel applications (i.e., 
successful predictions). In this context, e.g., researches in Hamiltonian chaos are merely one 
argument for maintaining that dynamical systems are richer in solution structure than the 
integrable part of mechanics, the importance of which has long been overemphasized. 
 
Epistemologically, therefore, drawing a direct comparison between the findings of deterministic 
chaos and the fundamental changes of physical theorizing in the 20th century is exaggerating. In 
contradistinction to relativistic and quantum mechanics, physical chaos research in the framework 
of classical mechanics does not develop novel fundamental structures of the micro- or macro-
cosmos, though it has led to a certain renaissance of classical mechanics by emphasizing the 
general and possibly unifying question of algorithmic, effective computability of dynamical 
systems. Surely, with the advent of deterministic chaos in the natural sciences, the “dream of 
physicalism,” in the sense of a belief in the feasibility of “perfect predictability” based on 
mathematical determinism, has met an additional and publicly very effective counterargument. 
Remember the famous, but rather metaphorical notion of the “butterfly effect." But it should also 
be remembered that the thesis of “perfect predictability” was never tenable. 
 
Moreover, some dynamic phenomena of deterministic chaos demonstrate that there is obviously 
no fundamental dichotomy between determinism and randomness in mathematical modelling, 
because unstable deterministic, chaotic systems may model specific random phenomena. For a 
variety of physical examples of ergodic systems it can be shown (Ornstein and Weiss, 1991) that 
a deterministic process is indistinguishable from a non-deterministic Markov process up to 
deviations due to a finite partition of the state space. If this partition is chosen as the finite limit of 
measurement accuracy, a deterministic and a Markov process model of a Sinai billiard are 
observationally indistinguishable. Thus, results from the investigation of the instability hierarchy 
of dynamical systems show that it is not always unambiguously possible to decide on the basis of 
empirical success whether the model adopted should be mathematically deterministic or 
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indeterministic (i.e., stochastic). This again shows that mathematical determinism is not very 
meaningful empirically, and that the determinism or indeterminism of our dynamical models 
should be conceived as a matter of degree; and deciding between a deterministic and an 
indeterministic model of description can be a convention depending on the choice of the precision 
of analysis. The connection between statistical and deterministic description is quite intricate 
indeed. For many, and probably for most types of predictions, statistical description is 
operationally more meaningful, since it reflects the finite precision of measurement and 
numerical process, and it bypasses the fundamental limitations associated with the instability of 
the hypothetically underlying deterministic motion. 
 
5. Is There Any Relevance of Chaos Research to the Analysis of Social and Technological 
Processes? 
 
First of all, let us hear some statements from a 1989 paper published in the American Journal of 
Physics (the copyright of which is with the American Association of Physics Teachers), under the 
title, “Chaos versus Predictability in Formulating National Strategic Security Policy” (Saperstein 
and Mayer-Kress, 1989). There it is maintained that: 
 

A generally recognized relevance of current physics methods to important nonphysics 
problems should make it much easier to attract and keep physics students. It thus seems 
reasonable for physicists to discuss and develop such nonphysical problems bothnin and 
out of their classrooms. Aside from attracting students, such activities by physicists may 
make important contributions to the public debate and resolution of major national and 
international issues (Saperstein and Maye-Kress, 1989, p. 217; my emphasis). 
 

After the announcement that “the well-known transition from laminar to turbulent flow is a 
heuristic analogy to the transition from cold to hot war,” Saperstein and Mayer-Kress present a 
“simplified procurement model for the Strategic Defense Initiative (SDI) . . . which can be used 
to determine the outcome of various deployment modes” (Saperstein and Mayer-Kress, 1989, p. 
217). As a result of their numerical investigation they conclude: 
 

Because of uncertainty as to which, if any, parameter sets are characteristic of the “real 
world”, we look at many sets. Within this variety, it is possible to find the desired "yes" 
answers to both of these questions [posed there]. . . . These results from a very simple 
model, which suggest caution toward a policy of deploying SDI, indicate the usefulness of 
applying physical ideas to the nontechnological world of strategy and public policy 
making. 

 
We have just introduced a large number of model parameters, many of which cannot be 
adequately pinned down from the open literature. There will be more such parameters as 
the model is developed. There will also be several model functional relationships that 
cannot be directly determined via observations of the present world scene. And yet we wish 
to learn something useful—applicable to the world scene— from our model, incomplete 
and uncertain as it obviously is (Saperstein and Mayer-Kress, 1989, p. 219; my emphasis). 

 
Despite their admission of the rather approximative character of their modelling approach (via 
some nonlinear rate equations), the authors hold to their general claims for its fruitfulness: 
 

Not only is physics useful for the discussion of the technological subunits of policy (will 
they work, separately and together as a functioning system?), it is also useful for analyzing 
the entire policy structure itself. It can throw significant light on the fundamental policy 
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questions: even if it all “works”, will it really do for us that which we want done? The 
ability to deal with such questions should certainly add to the pride of physics students and 
their faculty (Saperstein and Mayer-Kress, 1989, p. 222). 

 
Now there can be no doubt that there is an important place for the widespread application of the 
great amount that has been learned about nonlinearity in chaos research in recent years. But some 
concerns may already be formulated as to whether research as it is now will succeed in the broad 
sense hoped for. For the case of potential applications in the biological sciences it has been stated: 
 

More and more nonlinear research is becoming either marginal or irrelevant, aided and 
abetted by the wide availability of larger and larger computers, and the ease of formulating 
variations on a basic mathematical theme and doing one more case. Indeed, many of these 
incremental explorations yield fascinating special features. However, the important 
questions are: first, do they extend our general understanding; or, alternatively, do the 
special features really provide new, quantitative insight to some particular experimental 
observation? It's not clear in many instances of published research today whether the 
answer to either [question] is in the affirmative (Krumhansl, 1993, p. 97; my emphasis). 

 
In this sense, in quantitative biochemical and biomolecular modelling there seems to show up a 
certain tendency for “marginal modelling,” or “science by advertisement”: i.e., extremely 
sophisticated nonlinear simulations have been and are carried out “that show interesting behavior, 
but little effort has been expended to seek out substantively their presence or absence in situations 
they allegedly represented.” Similarly, many of the current nonlinear dynamical models of the 
conformations of biomolecules are “biology by advertisement” (Krumhansl, 1993, p. 98). 
 
Moreover, there is a certain amount of relevance to the estimation that 
 

a similar situation is developing in certain areas of nonlinear science today, particularly as 
new supercomputers allow the exploration of more and more complex model problems. . . . 
There are notable exceptions, as in hydrodynamics where exploration of singular 
properties, local structures, and turbulence has maintained close and faithful contact with 
the physics (Krumhansl, 1993, p. 98). 

 
Obviously, deterministic chaos and the predictability problems associated with it only apply to 
mathematized problem formulations in the form of deterministic dynamical equations. This 
severely restricts the actual impact of deterministic chaos in disciplines other than mathematics, 
physics, and physico-chemical dynamics (and even there). In this sense, an evident argument for 
why deterministic chaos is not so important in social process modelling is that deterministic 
dynamical models are rarely of successful use there; instead, stochastic modelling (e.g., 
Markovian systems) and probabilistic (“top-down”) approaches (e.g., synergetics; probabilistic 
diffusion-like processes; phase transitions in non-equilibrium systems) are frequently utilized 
(Gsänger and Klawitter, 1995; Anonymous, 1996b; Weidlich, 1994). An immediate sub-
argument in the same vein is that, even if deterministic models were used on some basic level of 
description, in any realistic model system probabilistic modelling prevails if the number of 
degrees of freedom exceeds a certain limit (say, 102-103); then, the micro-information about 
deterministic trajectories is smoothed out, e.g., through coarse-graining, or probability densities. 
 
It seems clear (or, it is almost trivial to say) that the limited successful applicability of dynamical 
(and also stochastic) mathematical models in, e.g., the social and behavioral sciences is basically 
the sheer result of the enormous, truly tremendous complexity of relevant systems there. This 
implies irreversibility, limited predictability, and limited reproducibility, irrespective whether the 
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systems are dynamically chaotic or not. Here, complexity is not meant to denote a technical term 
but comprises, among other things, the following problems: (i) the identification, construction, 
and interpretation of relevant observables with stable properties is most often a thing too hard to 
achieve; (ii) a corresponding measure space and its empirical basis are not easily, or 
unambigiously, or at all definable (and empirical data are often quite unsharp; for the explicit 
mathematical discussion of an interesting simple example from social politics, see Krause, 1996); 
(iii) most often it is a question what the relevant interaction mechanisms are, or how they should 
be modelled. In other words, at least from a physicist’s point of view the rather limited success of 
quantitative-mathematical methods in the social and behavioral sciences is a result of the fact that 
in the generic case we would have to investigate many many-particle systems which are 
nonlinearly coupled, which are subjected to stochastic disturbances, whose particle properties are 
changing in the course of dynamic evolution, and whose dynamical “laws” are also changing (or 
they are not uniquely identifiable with appropriate reliability). The lack of detailed and law-like 
dynamical models—which are also well-confirmed in the sense of being an integral part of a 
successful theory-net—in the social sciences leads to a distinct preference for employing 
statistical approaches in the sense of static models (i.e., of statistical analyses of empirical data) 
while dynamical models are at most used in the sense of quantitative simulations— which can, in 
most cases, merely be given a qualitative, or rather vague interpretation. 
 
Nevertheless, there are dynamical models in use (e.g., cellular automata, generalized rate 
equations, statistical mechanics, game theory, etc.) which give partial insights into selected 
complex social and behavioral dynamics (Gsänger and Klawitter, 1995; Hegselmann and Peitgen, 
1996; Hegselmann et al., 1996; Mainzer, 1997a; Mainzer, 1997b; Troitzsch, 1996; Weidlich, 
1994). Therefore, it seems that mathematical modelling and numerical simulations in the social 
sciences constitute interesting approaches supplementary to the core of the application of 
mathematical statistics and non-quantitative investigation. And mathematical modelling can be 
fruitful theoretically, heuristically, and sometimes even empirically; but it will always be very 
restricted in the social sciences. 
 
Among the possible successes to be gained from mathematical (quantitative) modelling of social 
processes, we find the following (see Hegselmann and Peitgen, 1996, pp. 13-15): (i) Theoretical 
model reductions can improve the theoretical understanding of the relations between micro- and 
macro-levels of description (e.g., micro-explanation of the appearance of unexpected properties 
on the macro level; unexpected reduction of known macro-phenomena to micro-processes). (In 
this sense social scientists may learn from chaos research “that a well founded substantial theory 
on the micro level is indispensable for understanding even the least complex social processes and 
for the analysis of process produced data: Curve fitting procedures on the macro level will never 
do, and fitting a standard linear model to data produced by a nonlinear process will do neither”; 
Troitzsch, 1996, p. 184). Theoretical results (Gaines, 1976; Gaines, 1977; Pearl, 1978, about the 
relation between the amount of data,, e.g., number of observations, the complexity of models, and 
their predictive properties seem to imply that indeterministic, stochastic models, which have been 
derived from empirical data, do not exhibit valuable predictive abilities, independent of the 
amount of data available.). (ii) Quantitative abstract models may allow for qualitative 
explanations, and they may further the “heuristic understanding” of the dynamics of complex 
processes where nonlinear dynamical modelling emphasizes the importance of the formation of 
organizational structures without central processing units (“self-organization” or non-equilibrium 
phase transitions). (Social scientists may learn from chaos research “that equilibrium states are 
seldom found in complex systems, and hence that linear models are not very well suited to the 
analysis of data in the social sciences”; Troitzsch, 1996, p. 184). (iii) Mathematical modelling, 
and numerical and analog simulation may provide non-negligible contributions to the process of 
theory formation in the empirical social sciences. (E.g., “An analysis of a noisy chaotic time 
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series will yield the attractor dimension and thus give hints at the number of variables—(e.g. 
subpopulations, or types of individuals, or attributes of groups— involved in the process under 
observation”; Troitzsch, 1996, p. 185). Besides hinting at such general model-theoretic, 
explanatory, and pedagogical aspects (or hopes, or regulative ideas of research), I cannot do 
better than emphasize a statement recently given in the literature: 
 

Whereas it is relatively easy to design and to simulate a complex model of a process in a 
complex social system in such a way that the model displays complex behaviour we shall 
see that it is extremely difficult to find or to gather data supporting such a model. Thus, in 
the realm of social science it might be in fact impossible to make reasonable use of the 
methods used in physics to detect chaotic behaviour (Troitzsch, 1996, p. 162). 
 

Quite obviously, what has been said about the impact of deterministic chaos on quantitative 
sociology also applies to the field of investigations in philosophy of technology, including ethics 
of technology. (Some recent works in ethics of technology are Hastedt, 1991; Lenk, 1992; Lenk, 
1994; Ropohl, 1996. For an overview of the state of the art in ethics of technology, see Grunwald, 
1996a; Grunwald, 1996b. Note, however, that Grunwald’s criticism is sometimes exaggerated, 
and his constructivist arguments—Grunwald, 1994 and 1995—against the feasibility of a 
quantitative approach in a social or technological systems’s dynamics are, at least, open to 
critique. See also Anonymous 1996a.) 
 
It also applies to action theory of decision and planning; technology assessment, etc., and 
especially to quantitative models in technology assessment (e.g., trend extrapolation; formation of 
historical analogies; Delphi reports; analysis of relevance trees; risk analysis; model simulation; 
cost-profit analysis). (For an overview of the state of the art in technology assessment, see 
Bullinger, 1994; Mohr, 1995. For the repertoire of methods employed in technology assessment, 
see VDI-Report, 1991.) 
 
In contradistinction to the dynamical models in the natural sciences (physics, chemistry, and 
biology), technological developments take place in much more complex scenarios comprising 
scientific, technological, economical, ecological, sociological, political aspects and the like. 
Therefore, it is tremendously more complicated to unambiguously fix procedures and rules for 
quantification in quantitative technology assessment which would guarantee the intersubjective 
and situation-invariant reproducibility of interpretation of quantitative models. 
 
Nevertheless, model simulations or numerical experiments (executed on the basis of different 
mathematical problem formulations ranging from simple optimization computations to the 
ambitious models of operations research) are a powerful tool for studying the behavior of 
complexly interacting system networks. This is especially true if real-world experiments are 
impossible because of theoretical, practical, or ethical reasons, or if the total effect of many 
interdependent causes can no longer be estimated intuitively. The basic methodological problems 
of quantitative dynamical technology assessment are these: while computer assisted model 
simulations and predictions are often desirable and indispensable, the empirical adequacy of the 
modelling quantities is often insecure (because of lack of dynamical models, insecure knowledge, 
insecure measurement units, subjective preferences, high real-world complexity). The resulting 
consequences are that the dynamics and results of the model systems are hard to survey and 
interpret, and their empirical adequacy is not unambigiously decidable. 
 
In this sense, the results of an opinion research poll among 208 mostly industrial research 
laboratories in Japan in 1990 seems to be typical. The researchers were asked for the efficacy as 
well as the degree of application of different technology assessment methods. This poll shows 
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that the efficacy of model simulation is highly estimated (as effective; or most effective) by more 
than 40% of the interviewed, but its degree of application is almost zero. While trend 
extrapolation gained almost the same efficacy estimation, it is applied by more than 30% of the 
interviewed (Grupp, 1994, pp. 79-82). To be sure, the different methods of technology assessment 
provide us with possibilities to analyze technological developments to some extent in advance, 
and to avoid some of their undesirable effects (Bullinger, 1994). For realistic situations, 
quantitatively precise predictions are, however, not effectively achievable, neither in the 
sense of deterministic, nor of reliable probabilistic predictions. This is because—intuitively 
speaking—“the problems are much more difficult than the N-body problem, or weather 
forecasting.” 
 
It is in order to cite some recent opinions here: 
 

— "Predictions, in the sense of absolute statements about the future, or firm forecasts, are 
never attainable in technology assessments. The complexity of the subjects of inquiry, as 
well as of the methods available, always intervene" (Bonnet, 1994, p. 37). 

 
— "To sum up, it can be said that there is no single method of technology assessment—
only various methodologies for particular technology assessments. These methods all come 
out of the particular disciplines brought into play. Moreover, whether or not the methods 
are appropriate for a particular technology assessment depends upon the competence of the 
team and the availability of data relative to the problem" (Bonnet, 1994, p. 49). 

 
— "Within the scope of research and development, or innovation, social and political 
processes play so great a role, relative to technical aspects, that it would be unrealistic to 
expect determinate supporting statements. Predictions, in the sense of absolute statements 
about the future, are not available for technology assessments. The same holds for forecasts 
in the narrow sense, i.e., statements making truth claims with a high degree of reliability. 
"Foreshadowing" might be the best concept to use to characterize an open-future type of 
technology assessment; indeed, it seems to be the only possibility" (Grump, 1994, p. 57). 

 
— "Technology assessment can no longer be viewed as a tool for precise forecasting—or 
as providing, for what is happening now but is viewed as an early sage of what is to come, 
either a short-term or a long-term framework or perspective. Rather, technology assessment 
is closer to being a tool for the discussion of possibilities or alternative futures. Today, it 
seems, it is much more like the preliminary discussion of choices among possibilities—
which politicians can then proclaim to be true or well grounded if they want to seem to 
have information about the future. This does not mean that we should no longer make 
predictions about future possibilities, especially if they can be made in the form of models 
or calculations—for here we do have better abilities than before. However, this should not 
be the only place we look for knowledge about responsible behavior; that is better sought 
in discussion or open arguments about what is or is not desired" (Petermann, 1994, p. 110). 

 
— "On the whole, technology assessment has come to be thought of—figuratively 
speaking—as a more open, softer, less science-like concept. The dominance of experts, or 
basing claims on hard evidence, have either disappeared or come to be treated as no more 
than background" (Petermann, 1994, p. 111). 
 

Therefore, in the sense of a methodological or practical (but not necessarily epistemological or 
ontological) anti-reductionism, we have to accept the thesis of non-separability of quantifications 
in social systems from the overarching systems of normative aims and values (and risk 
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assessment). Accepting this should, however, neither lead to an overall negation of the possibility 
of quantitative modelling in specific cases, nor to an underestimation of the importance of non-
quantitative analyses in the framework of a generalized systems theory (Kornwachs, 1991). In 
technology assessment, the need for interdisciplinary research efforts is obvious (and also rather 
well known, but not always realized); while chaos research is surely of rather limited relevance. 
 
6. Concluding Remarks 
 
To conclude, I would like to summarize the most general conclusions that can be drawn from 
contemporary chaos research: theoretically, deterministic chaos is conceived as a property of 
systems which are strictly deterministic in the sense of mathematical determinism; empirically, 
the most prominent feature of such systems, namely, the exponential sensitivity of initial 
conditions, leads to an amplification of any perturbation, noise, or error, which grow 
exponentially in the course of time; deterministic chaos always implies effective uncomputability 
(but not necessarily untreatability)—i.e., the precision of the initial data required for gaining a 
given precision of final data (and thus computational complexity) increases exponentially fast; 
unambigious definitions of deterministic chaos exist only for relatively simple mathematical 
maps and not for interesting cases of dynamical systems. 
 
There is a hierarchy of degrees of computability of formal systems, and only the “edges” are 
known, to date. Within this hierarchy we may call those systems chaotic which, basically because 
of their nonlinearity, exhibit at least some close analogues of the SD property because of the MIX 
and DPP property, and which are therefore algorithmically uncomputable (or have at least 
algebraically growing computational complexity) in the long term. Thus, deterministic chaos 
constitutes merely one problem type in the wide, and partially still unexplored range of problems 
of effective computability. In a more general sense, chaos research provides us with intuitive 
examples and arguments which should be used to further our often underdeveloped abilities to do 
“nonlinear thinking” (Mainzer, 1997a); namely, conceptualization in terms of nonlinear causal 
nets instead of mono-causal chains. Such abilities are well trained by studying the dynamics of 
nonlinear systems, with their emphasis on the role of instabilities leading to exponential error 
amplification. 
 
Another lesson to be learned from chaos research is that the mathematical and physical models of 
dynamical systems theory, which stresses the importance of generic properties and structural 
stability (e.g., strange attractors, bifurcation scenarios), provide invaluable guidance in the study 
of specific problems (e.g., many numerical results previously qualified as “anomalous” are now 
used for identifying chaotic behaviour). Different methods are provided for analyzing solutions 
with interesting global properties in specific nonlinear models. Most of these methods rely 
heavily on numerical experiment and have led to a number of new methods of data analysis (e.g., 
dimension computations, Lyapunov exponents, Kolmogorov-Sinai entropy, phase space 
reconstruction, spectra of dimensions). It seems, however, that the range of applicability and 
validity of such methods has not yet been investigated comprehensively. None of the famous 
scenarios of “bifurcation to chaos” (like period doubling, quasiperiodic) seem to be sufficiently 
general that we can entirely dispense with analyses aimed at determining what actually occurs in 
specific dynamical models. 
 
It should also be clear that chaos research does not constitute a new science or novel theory. 
Physical chaos research does not even exist as a coherent field (comparable, e.g., to quantum and 
relativity theories); and there is no comprehensive methodology available for, e.g., mathematical, 
Hamiltonian, and dissipative chaos. In these three general cases the properties of chaos are (or 
have to be) investigated by different methods. Thus, chaos research constitutes a rather loose 
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collection of ideas and methods which can be added to the scientist's toolbox, and many are 
inherited from classical applied mathematics. 
 
In summary, the different approaches to deterministic chaos tell us that there are severe 
quantitative limitations to long-time computability, and thus controllability, already in 
deterministic systems with few degrees of freedom. Thus, deterministic chaos constitutes one 
argument out of many that attack the general positivistic belief in the complete computability of 
nature—advocated at least since Galileo, Hobbes, and Descartes, but also by the 19th-century 
mechanists, 20th-century positivist philosophers of science, and many others. 
 
For example, as Moritz Schlick said: “In other words, arriving at a correct prediction based on 
causality is the true mark of lawlikeness" (Schlick, 1931, p. 150). Note that deterministic chaos 
also pulls down Einstein’s famous and somewhat superficial 1935 criterion of “physical reality,” 
which reads: “If, without in any way disturbing a system, we can predict with certainty (i.e. with 
probability equal to unity) the value of a physical quantity, then there exists an element of 
physical reality corresponding to this physical quantity” (Einstein et al., 1935, p. 777). 
 
The mathematized natural sciences are still rather close to the technocratic ideal of progress; but 
they also draw attention to its limits today. We clearly see the epistemological limits of the 
insights possible for us into the dynamics of the material world, which have only become 
accessible to precise methodological analyses in recent times. The limitations of computability 
are limits of controllability and feasibility. Therewith, it is not the developmental endpoint of the 
mathematized natural sciences which is announced, but it may well be an insight into the 
indispensable value of some more qualitative arguments within the quantitative sciences which 
need to be promoted. 
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