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Using Computers to Make Logic Relevant

Frederick Suppe

1. The Standard Conception of Logic Courses

Charles Peirce, in his architechtonic of philosophy, placed logic as a sub-branch 
of ethics: For did not logic tell us which arguments are good, hence instruct 

us in the virtues of argument? As two recent authors put the point starting in their 
logic text:

Logic is concerned with arguments, good and bad. With the docile and the 
reasonable, arguments are sometimes useful in settling disputes. With the 
reasonable, this utility attaches only to good arguments. It is the logician’s 
business to serve the reasonable. Therefore, in the realm of arguments, it is 
he who distinguishes good from bad.

Virtue among arguments is known as validity.1

In principle I am willing to accede to such lofty claims—that it is the logician 
who distinguishes good from bad in argumentation. But principle is not practice, and 
practically speaking the logician has precious little to offer in evaluating genuinely 
problematic arguments.

Nevertheless, the typical logic-text authors pass off logic as a valuable practical 
means for evaluating arguments. For example, Irving Copi in his Symbolic Logic says,

[t]he study of logic, especially symbolic logic, will tend to increase one’s 
proficiency in reasoning. And . . . the study of logic will give the student cer-
tain techniques for testing the validity of all arguments, including his own.2

Upon reading this the student thinks he is on the threshold of realizing Leibniz’ 
dream, a Calculus Ratiocinator, which mechanically will enable him to determine 
when Nixon is cogent, and whether to be convinced by his Mother’s pleas for 
chastity. But such hopes quickly fade as, instead of such important arguments, his 
attention is diverted to P’s and Q’s and the most exciting arguments he evaluates 
are at best as interesting as
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[n]o student who fails some course that Rudolf teaches fails all the courses 
that Alfred teaches. Some student fails all the courses and also fails all the 
courses that Rudolf teaches. Therefore, if Rudolf teaches any courses, then 
there is a course that every student fails.3

And as the semester progresses he feels increasingly cheated.
Is our student wrong? Has he been cheated? Are the textbook authors, and 

the instructors who transmit their offerings, dealing in fraud? Or is our student just 
confused—the only failing of instructors in logic being that we haven’t succeeded in 
convincing him that logic (the logic we transmit) is of inestimable practical value 
to him? My own opinion, which I will attempt to defend below, is that our student 
has the goods on us and on the authors we subsidize by teaching such a course.

If I am correct about this, then the insult to the student often is double. For 
not only do we present a fraudulently offered course, but often we sanctimoniously 
require that he take the course (at least if he is to use philosophy to satisfy his hu-
manities liberal arts requirements): After all, is not correct reasoning essential to 
good philosophy? And how can he appreciate philosophy if he can’t reason correctly? 
And how can he reason correctly if he doesn’t know logic?

Before entering into a consideration whether the above charges are justified, let 
me make a crucial observation: whether the above student reaction is defensible or 
not, it is a fact of current academic life that this is a typical reaction to introductory 
logic courses—especially ones which concentrate on symbolic logic. And whether 
or not we think it a fair or rational reaction, it poses a problem for the teaching of 
elementary logic courses—namely, how do we make them relevant in the eyes of our 
students? Whether or not it is true that the content of elementary logic courses is in 
principle an aid to improving the rationality of practical argumentation, on a large 
scale our courses and the textbooks we use fail both to convince our students this is 
so and to give ours students any rational argumentative edge in practical disputes. If 
you don’t believe this, just consult typical student evaluations of introductory logic 
courses taught on the above premise. As an example, I quote from summary student 
evaluations of such courses taught at the University of Illinois:

Students were generally disappointed with this course. It is taught basically 
as a math course dealing entirely with manipulating symbols in a context-
free language and proves to have little relevance. “This course was a waste 
of time except for the fact it fulfilled my LAS [humanities distribution] 
requirement. It was completely dull, boring, and irrelevant.”4

Admitting all the above, it is possible for one to react as follows: the problem 
is not with logic—it’s just the way it is taught. Most logic courses are mistaught 
and fail to realize their promise—which promise is aptly captured in the first two 
quotations above. My own response to this is that if you escape the above student 
objections while teaching introductory logic on the foregoing conception, you’ve 
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done nothing to vindicate that conception of an introductory logic course: You’ve 
shown your own charisma, not the viability of such a logic course.

The problem here is not the teaching: it’s that formal logic is not a practical 
means for evaluating genuinely problematic arguments. If you don’t believe me, 
try the following experiment: Take an Agatha Christie short story and, using the 
techniques of an introductory logic course, try to figure out exactly what Poirot’s 
argument is in solving the case. (“The Kidnapping of Johnny Waverly” is a particularly 
apt one; I once had a class do this and they understood less how Poirot solved the 
mystery after doing so than they did when they first read the story). But enough of 
polemics and examples. I think a kind of theoretical argument can be given which 
tends to show the practical uselessness of formal logic in evaluating arguments. To 
adapt an example from Benson Mates (whose skepticism on the practical value of 
logic is heartwarming but errs in the direction of optimism.),5 consider the follow-
ing genuinely problematic argument:

1) Socrates is human.
2) Human is human.
3) For every A, B, C: If A is C and B is C, then A resembles B with respect 

to being C.
4) Therefore, Socrates resembles Human with respect to being human.6

Is it sound? Since our students are aware (from our courses) that ‘is’ sometimes 
signifies identity and other times predication, they interpret ‘is’ in each instance in 
what seems the most natural way, using ‘is’ as identity in the second premise and 
‘is’ predicatively in the other three sentences, and then mechanically determine the 
argument is invalid although the premises seem true. Does this settle the case? No. 
for might not the author have used ‘is’ systematically with just one of these two 
meanings? If he did, the ‘is’ of identity is ruled out as being implausible; and, so we 
take it as the ‘is’ of predication. Doing so we find the argument becomes valid, but 
that the second premise is false or meaningless. Well, we’ve exhausted the standard 
textbook moves, and so we conclude the argument is unsound. But, notice the fol-
lowing: if we interpret ‘is’ by the phrase ‘is included in’ it turns out that the premises 
are true and the argument is valid; so it is sound!

What do we make from this? The following, I think. The argument in question 
is genuinely problematic as to its soundness. To apply formal logic to evaluate even its 
validity, we have to resort to a fair degree of philosophical analysis. And depending 
on our analysis, the application of formalism would be question-begging. And, in this 
argument, at least, once the analysis has been made, no real question of the validity 
or soundness of the argument remains to be solved by resort to formalism.

This example makes, I think, the following two points: (1) if the argument is 
relatively simple (as the above is) yet genuinely problematical, any resort to formal 
logic will be question-begging unless the formalism is bolstered by an adequate prior 
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philosophical analysis, and the analysis usually will render the formalism superfluous; 
(2) if the argument is not relatively simple, the formalism may help, but only when 
it is justified by an adequate prior philosophical analysis of the argument. Therefore 
(3), the legitimate recourse to logical formalism in the evaluation of genuinely prob-
lematic arguments requires a prior philosophical analysis. Moreover (4), formal logic 
cannot provide that prior philosophical analysis (else via (1) and (2) we get into a 
vicious infinite regress). From this I conclude that logic itself (at least as measured 
by the content of the typical introductory logic course) cannot provide an effective 
practical means for evaluating genuinely problematic arguments.

The argument just given leads to another argument displaying the limits of 
formal logic for evaluating genuinely problematic arguments. For any attempt to use 
logical formalism to evaluate that argument ipso facto will beg the very question!

Thus, our disgruntled student is not “too blind to see the value of what we 
are teaching” him; rather he has seen through our fraud. And this poses a genuine 
problem: Why are we teaching him logic under the above fraudulent conception?

2. Other Conceptions of Logic Courses

Instinctively feeling fraudulence in the standard conception of logic courses, some 
instructors have attempted other approaches to the subject matter.

One reaction to the argumentative irrelevance of standard logic courses is to 
blame the problems on symbolic logic—perhaps echoing Strawson on its deviation 
from the use of connectives and quantifiers in ordinary English.7 typically this takes 
the form of retreating to the traditional logic of the syllogism and sorites. Not only 
does this seem to me intellectually dishonest (being akin to teaching only Aristotle’s 
physics in a survey physics course), but it does nothing to save the above concept 
of logic. For to use a standard example, it demonstrably fails to be adequate for the 
evaluation of rational arguments, hence is inadequate for evaluating most argu-
ments. It cannot even show sound the following argument; “All horses are animals. 
Therefore, all heads of horses are heads of animals.” At best, traditional logic has 
an antiquarian interest which properly is relegated to a segment of a course in the 
history of (ancient and medieval) philosophy.

An obvious approach is to just teach symbolic logic in its full mathematical 
glory, disclaiming any relevance to it at all. Taken to its extreme, one teaches it as 
a kind of openly irrelevant intellectual puzzle; this is an approach I’ve often taken 
and find many students responsive to. As much merit as this approach has, it leaves 
unanswered the question of why we should require anyone to take it or make it 
the typically required portion of a philosophy liberal arts sequence. Moreover, it 
suffers most grievously by failing to make the course relevant in the way it could 
be, as I shall argue below. Closely related to this approach are the approaches of 
(1) exploiting the elegance and rigor of logic to make it an aesthetics course in the 
“beauty of mathematics” or else (2) an out-and-out high-powered course in the 



Using Computers to Make Logic Relevant

115

substance of mathematical logic. Against both it can be objected this is not the 
appropriate function of an introductory logic course in a philosophy liberal arts 
sequence. Against (1) it can also be said that few introductory logic instructors can 
successfully do it.

What I am suggesting is that it is a function of an elementary logic course 
to be relevant to the practical concerns of the average student, that the standard 
conception of logic courses intrinsically fails to be so relevant, and that none of the 
above alternatives does any better. If the relevance of introductory logic courses is 
to be teaching students to reason better, then I suggest we relegate our logic courses 
to the scrap heaps they belong in and replace them by “introduction to philosophy 
courses” which intensively teach one to do informal “philosophical analysis”;8 for 
if my argument above is sound, that is the essence of evaluating arguments, not 
formal logic.

3. Using Computers to Make Logic Relevant

An underlying bias in my preceding arguments is the idea that our elementary logic 
courses (as opposed to courses in mathematical logic required of majors9 or advanced 
logic courses for those interested in mathematical logic) should enjoy a relevance ap-
propriate to that of a humanities course satisfying a “liberal arts” requirement. What 
is the purpose of such liberal arts courses? This is a legitimate matter of debate, but 
I would suggest that a liberal arts course minimally should give the typical student 
some intellectual advantage in coping with the human environment he has to live 
in. The promise of the standard conception of logic courses clearly aims at satisfying 
this desideratum; unfortunately its deliverance does not.

Several years ago Professors Arthur Burks, Jaakko Hintikka, and I discussed 
this very issue: how do you make introductory logic courses relevant in the sense 
of the above conception of the purpose of a liberal arts sequence? Out of that con-
versation emerged a very interesting idea, which I wish to relate to you: At various 
times in human history there have been major technological innovations which 
have radically transformed the quality and nature of human existence. One need 
not go so far back as the Bronze Age for an example. In the Industrial Revolution 
of the 1760’s onward, we find an example we can empathize with. But, to be more 
contemporary: since the ENIAC became operational in 1946, we have experienced 
an equally important example—the Computer Revolution. Today the computer is 
so persuasive in everyday life—the IRS audit of our taxes, the collation of credit 
and other personal information into computer files and other computer invasions 
of privacy, university records, industrial management decisions, bank statements, 
plotting war strategy, the manipulation of telephone switching, etc.—that in the last 
two decades the computer has radically changed the shape of human existence—
especially in the technologically more advanced societies. Just as Henry Adams 
correctly found it necessary for the educated person to learn about, and come to 
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grips with, the “Virgin and the Dynamo” if he was to adequately cope with his 
changed society,10 so too the educated man today must have a clear understanding 
of computers—what their intrinsic limitations and capabilities are, and some clear 
idea how they do what they do.11 For only with such understanding can we hope 
to cope with our computerized environment and realistically decide whether the 
likes of HAL of 2001 are more to be feared than our politicians.

How does one impart this important “humanistic” understanding of the 
non-human computer and its intrusions into human life? Learning to program 
a computer is little help—it only teaches you to talk with them, but gives you no 
insight into them except that they “speak” funny languages such as FORTRAN. 
And understanding the electrical engineering of micro-integrated circuits, thin-film 
or cryogenic memories, etc., is too much to expect of the average educated person. 
Out of that discussion with Burks and Hintikka emerged the following suggestion: 
There is a branch of logic, automata theory (the logic of computers) which—with-
out getting involved in the engineering complexities of the actual construction of 
computers and without the ephemeral loss of touch with the actual internal opera-
tion of computers that comes from the study of programing languages—is ideal 
for efficiently imparting in fair logical detail a clear conceptual understanding of 
computers to the average college undergraduate: what their intrinsic capabilities 
and limitations are, and how they work. From such a study, a quite full conceptual 
understanding of computers can be gained. Granting that such an understanding 
of computers is of high humanistic priority, where is the best place to impart it in 
the college curriculum? Our answer was—in an elementary logic course. For on 
the basis of the minimal normal content of the typical elementary logic course, 
(propositional calculus, truth tables, disjunctive normal-forms, and a bit of naïve 
set theory—all of which I have found can be taught in 4-5 weeks), one can develop 
the substance of automata theory so as to impart such a conceptual understanding 
of computers.12

As an outgrowth of that germinal idea, the last several years I have been 
developing an experimental introductory logic course—first at the University of 
Illinois13 and now at the University of Maryland—which minimally develops 
symbolic logic up through predicate calculus, then exploits the logic to develop 
automata theory—which in turn is used to impart a conceptual understanding of 
computers. The development of logic (including naïve set theory) and the automata 
theory are interspersed; and the automata theory developed includes the theories 
of switching nets, logical nets, Turing machines, Universal Turing machines, and 
a proof of the non-decidability of the halting problem. In the remaining time we 
consider modern prototypical computers; their esoteric applications in biological 
simulation, the computer compositions in music, artificial intelligence (including 
Samuel’s Checker Playing Machine which learned to play tournament-caliber 
checkers); and finally the mind-machine problem (“Can Computers Think?”). In 
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the course students learn the standard symbolic logic, though they spend less time 
on it and are much less proficient in using it to “evaluate” arguments in the usual 
question-begging ways. They do, however, come out knowing quite a bit about 
computers, can program the Universal Turing Machine, and have understood the 
philosophical significance of Church’s Thesis and the non-decidability of the Halt-
ing Problem for Turing machines. And they have a healthy respect for computers, 
but have lost their awe of them. Most importantly, they react very favorably to the 
course, and feel they are getting something importantly relevant from the course 
(namely the understanding of computers), which is notably absent in their reactions 
to traditional logic courses. It is no wonder, then, that they are far more excited 
by and interested in this course than are students in traditional logic courses. And 
students who have studied computer programming since taking the course express 
the opinion that the course gave them an advantage over other students in learning 
the program. Thus student reactions vindicate this conception of using computers 
to make logic relevant.

4. Teaching A Computer-Related Logic Course

In arguing against the traditional conception of logic courses, and in pushing for 
the computer-related logic course, my motives obviously have not been merely to 
relate to you a novel and somewhat esoteric approach to teaching introductory logic. 
If my arguments and polemics against the standard conception of logic courses 
make their case, then either we must drop introductory logic from the curriculum 
(hopefully replacing it by courses in philosophical analysis), or else we must radically 
reconceive what we’re trying to accomplish in such courses. And I have been urging 
a particular re-conception of introductory logic courses that I’ve found relevant in 
students’ eyes and for which I think I can find reasonable academic justification. It 
should be obvious that my intention here is to convince the reader to attempt such 
a computer-oriented logic course, in the hopes that such courses eventually will 
become a standard part of the undergraduate philosophy curriculum.

There is, however, one practical problem facing the widespread incorpora-
tion of such a course into the undergraduate philosophy curriculum—namely that 
there does not presently exist a textbook suitable for the beginning undergraduate 
level course which comprehensibly develops the required automata theory out of 
the normal elementary symbolic logic. The problem is further complicated by the 
fact that existing automata theory textbooks14 do not develop automata theory in 
a manner that easily can be adapted so as to be readily comprehended by typical 
undergraduates. Indeed, our experience in teaching the experimental course described 
above indicates that a nontraditional development of the material, unlike that found 
in existing automata textbooks, is a key element of its pedagogical success.15

Although this problem soon will be solved,16 for the moment the instructor 
desiring to introduce the sort of computer-oriented logic course advocated here 



Frederick Suppe

118

will have to teach it from duplicated notes he must prepare himself. By way of 
encouraging and aiding the introduction of such a course, I will briefly sketch the 
development of the course material which has proved successful in the experimental 
course outlined above.17

The logical apparatus required for developing the automata theory consists in 
rudiments of propositional calculus and naïve set theory. Any standard truth-table 
presentation of propositional calculus will suffice, though it is advisable to use ‘1’ 
instead of ‘T’ and ‘0’ instead of ‘F’—as is standard in automata theory. In addition, 
the notion of a disjunctive normal form should be introduced, and an algorithm 
presented for obtaining disjunctive normal forms from truth tables.18 The required 
set theory consists of the standard set operators, ordered n-tuples, and relations 
and functions.19

The first branch of automata theory to be developed is switching theory. 
This is done by introducing three basic switches—not, or and and. Their behav-
iors are defined by the truth tables for the corresponding sentential connectives, 
interpreting ‘1’ as “on” and ‘0’ as “off.” Rules then are introduced for connecting 
these switches together to form switching nets.20 The behavior of these switching 
nets can also be described by truth tables, which in turn allows wffs in proposi-
tional calculus to describe the behavior of these switching nets when net inputs 
are labeled by propositional variables. The truth-table algorithm for finding 
disjunctive normal forms (cf. above) is then adapted into a general procedure 
for constructing logical nets which realize net behaviors characterized by wffs of 
propositional calculus.21

Next the theory of switching nets is expanded into the theory of logical nets, 
which are constructed out of and, or, and not switches and a unit delay element which 
serves as a memory unit.22 Then the Burks-Wang τ / λ techniques for describing the 
behavior of logical nets are introduced,23 as are State diagrams.24 Then Burks-Wang 
normal form logical nets25 are introduced and exploited as a general procedure for 
constructing logical nets which realize behaviors specified via τ/λ techniques.

Turing machines are introduced by attaching tape read-write heads (having 
four inputs—“move right,” “move left,” “mark,” “erase”—and one output which 
emits the contents of the cell under scan) to a logical net with one input and four 
outputs such that at most one output can ever be on.26 It is observed, then, that 
all the logical net does in a Turing machine is to give the tape read-write head 
instructions to move its tape to the right or left, or mark a 1 or 0 on the tape, where 
the instruction given may depend upon the contents of the tapes. This means that 
the behavior of a Turing machine can be specified by a program of instructions 
to the tape read-write head. A variant of Wang’s program-characterization of 
Turing machines27 due to Thatcher28 is then introduced, and subsequently used 
to work with Turing machines. Following Thatcher’s development, it is shown 
how Turing machines can be used to compute functions. Then it is shown how to 
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build a Universal Turing machine which, when suitably instructed, can compute 
any function which any Turing machine can compute.29 Church’s Thesis is then 
introduced and argued for,30 from which discussion it is concluded that Turing 
machines can do anything any possible computer can do. Thus the capabilities of 
the Universal Turing Machine are exhaustive of the computational abilities of all 
possible computers. This establishes the intrinsic capabilities of computers. Next, 
the Halting Problem is introduced and show undecidable,31 and it is shown how 
this establishes intrinsic limitations on what computers can do.

Having completed the automata theory, it next is shown how modern-day 
digital computers are realizations of automata,32 and how the computational abili-
ties of computers established in our study of Turing machines can be harnessed via 
numerical coding to perform a wide variety of practical tasks. For this part of the 
course I rely on the Scientific American reprints contained in Sections II and IV of 
Fenichel and Wizenbaum, Computers and Computation. This part of the course in-
cludes consideration of issues on artificial intelligence which, via a consideration of 
the parallels between logical nets and the human brain,33 raises the mind-machine 
problem—Can machines think? Then the standard literature on this subject34 can 
be considered; in dealing with this issue I find the approach taken by Arthur Burks 
in his APA Presidential Address35 especially effective.

5. Summary

In this paper I have considered a number of standard conceptions of introductory 
logic courses and found them wanting. In Section 1, I argued the most common 
premise on which introductory logic courses rest—that formal logic provides an 
effective general means for evaluating arguments—was fraudulent, and that students 
recognize it as such. In Section 2, I considered various other frequently encountered 
conceptions of logic courses and found them unsatisfactory—at least if introduc-
tory logic courses are to function as part of required liberal arts general education 
sequences; for these approaches lack the relevance to the human situation essential 
to such courses. In Section 3, I suggested that there was a way to make introductory 
logic courses enjoy that relevance—namely by using the logic commonly taught 
in such courses to develop automata theory, and then use that automata theory to 
impart a thorough conceptual understanding of computers. Section 4 discussed the 
feasibility of such a course, pointing out a practical problem caused by the temporary 
unavailability of an adequate textbook for such a course—which requires that it 
be taught from notes prepared by the instructor. A somewhat detailed outline of 
such a course was presented, indicating the sources an instructor should consult in 
working-up such a set of notes. My experience has shown the course can be taught 
quite successfully from such notes distributed to the class. Working-up such a set 
of notes requires effort, but expending the effort is morally preferable to the easier 
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practice of continuing to serve our students the academic fraud kown as the standard 
elementary logic course.

Notes

This is a revised version of part of an invited address given before the Western Confer-
ence on the Teaching of Philosophy in conjunction with the 1973 Western Division 
meetings of the American Philosophical Association. I am grateful to my former col-
league at the University of Illinois, Professor Hugh Petrie, for comments on a draft 
of this paper. This paper is dedicated to Stephen Toulmin—who although trained 
as a mathematician, has developed a healthy disrespect for mathematical logic as a 
philosophical tool.
1. D. Kalish and R. Montague, Logic: Techniques of Formal Reasoning (New York: Har-
court, Brace, and World, 1964), 3. The spirit in which this passage obviously is intended 
in the overall context of the book should not be overlooked.
2. Copi, Symbolic Logic, 3rd edition (New York: Macmillan 1967), 1–2; emphasis 
added.
3. Kalish and Montague, Logic, 176.
4. The Advisor (Urbana: University of Illinois Press, 1969–1970), 239.
5. See especially chap. 5 of his Elementary Logic (New York: Oxford, 1965).
6. This argument is from B. Mates, “Synonymity,” reprinted at L. Linsky, Semantics 
and the Philosophy of Language (Urbana: University of Illinois Press, 1952), 111–136; 
the discussion which follows is based on Section III of that paper.
7. See P. F. Strawson, Introduction to Logical Theory (London: Methuen, 1952).
8. From my own experience, such courses do a better job of improving reasoning 
ability than standard logic courses.
9. I’m not sure there is any rationale for requiring courses in mathematical logic 
of them, except the fact it is a kind of literacy now required to read portions of the 
philosophical literature. And for this a good twenty-five page set of mimeographed 
notes on logic is enough. In this vein, while I was teaching at the University of Illinois 
(Urbana) we revised our Ph.D. logic requirement there. After discussion, the committee 
drafting the new requirement agreed the ideal logic requirement for philosophers qua 
philosophers was to prohibit any knowledge of symbolic logic at all. Feeling this was 
unenforceable and unrealistic, it finally was decided that we would require at least as 
much logic as was contained in Vol. 1 of A. Church, Introduction to Mathematical Logic 
(Princeton: Princeton University Press, 1956). For in that case we could rightly hold 
them responsible for any misuse of logic they might make!
10. See his The Education of Henry Adams (New York: Modern Library, 1931).
11. The importance of this need is reflected by the fact that the Smithsonian Institu-
tion’s Museum of Science and Technology devotes as much display space to computers 
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as it does to medicine and pharmacy, to petroleum, or to the origins of modern science. 
The emphasis in their displays is on understanding how computers work.
12. This is no accident; historically, the first computers were, from an engineering point-
of-view, simply devices to do automata theory; and the first computers were designed by 
teams of logicians and engineers building machines to do logic. Since then, automata 
theory has emerged as an abstract field of computer design, though it has tended to 
supplant logic by its algebraic extensions in the field of automata theory.
13. In developing the course and trying it out on students at the University of Illinois, I 
was aided by Professor Thomas Nickles and my graduate assistants Mr. Michael Drum-
mer and Mr. Richard Schubert.
14. For example, M. Davis, Computability and Undecidability (New York: McGraw-
Hill, 1950), or M. Minsky, Computation: Finite and Infinite Machines (Englewood Cliffs: 
Prentice Hall, 1967).
15. The situation is not unlike that encountered in introducing symbolic logic into the 
undergraduate curriculum. So long as textbooks only developed symbolic logic axiomati-
cally along the line of Principia Mathematica, there were extreme practical difficulties 
facing the introduction of symbolic logic into the undergraduate curriculum. However, 
once textbooks were introduced which presented non-standard developments of symbolic 
logic along Gentzen natural-deduction lines, symbolic logic courses became standard 
undergraduate offerings.
16. Namely by the textbook for such a course I am writing, Introduction to the Logic of 
Computers.
17. The version of this paper read before the Western Conference on the Teaching of 
Philosophy (cf. unnumbered note above) was approximately eight times longer than 
the present version, and contained a quite detailed development of the course material 
sketched below. Copies of the longer development can be obtained by writing the author.
18. Such an algorithm is presented at G. Massey, Understanding Symbolic Logic (New 
York: Harper and Row, 1970), 43–46.
19. A sufficient development can be found in R. Stoll, Sets, Logic, and Axiomatic Theories 
(San Francisco: Freeman, 1961), Sections 1.1–1.6, 1.8.
20. The rules are rules 1, 2, 4, and 5 of the definition of a logical net given in Section 
4. of I. Copi, C. Elgot, and J. Wright, “Realization Events by Logical Nets,” in E. F. 
Moore, Sequential Machines (Reading: Addison-Wesley, 1964), 175–192.
21. Various aspects of this development of the theory of switching nets can be found 
in Copi, Elgot, and Wright, “Realization Events by Logical Nets,”and the works cited 
in Note 23 below, as well as in the longer version of this paper cited in note 17.
22. Cf. Copi, Elgot, and Wright, “Realization Events by Logical Nets,” for the defini-
tion.
23. Cf. Section 2.2. of A. Burks and H. Wang, “The Logic of Automata,” in H. Wang, 
A Survey of Mathematical Logic (Amsterdam: North Holland, 1962), 175–223.
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24. Cf. Section 1. of R. McNaughton and H. Yamada, “Regular Expressions and State 
Graphs for Automata,” Moore, Sequential Machines, 157–174.
25. Cf. Burks and Wang, “The Logic of Automata,” Section 2.3.
26. For an intuitive description of  Turing machines, see Wang’s article in R. Fenichel  
and J. Weizenbaum, Computers and Computation (San Francisco: Freeman, 1971), 
136–144 and Section 6.0 of Minsky, Computation.
27. Cf. H. Wang, “A Variant to Turing’s Theory of Computing Machines,” Journal of 
the Association for Computing Machinery 4 (1957): 63–92.
28. Cf. Section 1 of J. Thatcher, “Self-Describing Turing Machines and Self-Re-
producing Cellular Automata,” in A. W. Burks, Essays on Cellular Automata (Urbana: 
University of Illinois Press, 1970), 103–131.
29. This is done along the lines of Thatcher, ibid., Section 6, except that the Universal 
Turing Machine presented operated on a three-digit binary code. See the longer version 
of this paper noted in Note 17 for the details of this design.
30. Cf. A. Fraenkel and Y. Bar-Hillel, Foundations of Set Theory (Amsterdam: North 
Holland, 1958), 297–303; chaps 11–13 of S. Kleene, Metamathematics (Princeton: Van 
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