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to Encourage Independence Among Models
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Abstract: According to population biologist Richard Levins, every discipline has a 
“strategy of model building,” which involves implicit assumptions about epistemic 
goals and the types of abstractions and modeling approaches used. We will offer sug-
gestions about how to model complex systems based upon a strategy focusing on 
independence in modeling. While there are many possible and desirable modeling 
strategies, we will contrast a model-independence-focused strategy with the more 
common modeling strategy of adding increasing levels of detail to a model. Levins 
calls the latter approach a ‘brute force’ strategy of modeling, which can encounter 
problems as it attempts to add increasing details and predictive precision. In contrast, 
a model-independence-focused strategy, which we call a ‘pluralistic strategy,’ draws 
off of Levins’s use of an assemblage of multiple, simple and—critically—independent 
models of ecological systems in order to do predictive and explanatory analysis. We 
use the example of model analysis of levee failure during Hurricane Katrina to show 
what a pluralistic strategy looks like in engineering. Depending on one’s strategy, 
one can deliberately engineer the set of available models in order to have more inde-
pendent and complementary models that will be more likely to be accurate. We offer 
advice on ways of making models independent as well as a set of epistemic goals for 
model development that different models can emphasize.
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The naïve, brute force approach would be to set up a mathematical 
model which is a faithful, one-to-one reflection of this complexity. 
This would require using perhaps 100 simultaneous partial differ-
ential equations with time lags; measuring hundreds of parameters, 
solving the equations to get numerical predictions, and then measur-
ing these predictions against nature. However:

(a) there are too many parameters to measure; some are still 
only vaguely defined; many would require a lifetime each for 
their measurement.

(b) The equations are insoluble analytically and exceed the 
capacity of even good computers.

(c) Even if soluble, the result expressed in the form of quo-
tients of sums of products of parameters would have no mean-
ing for us.

Clearly we have to simplify the models in a way that preserves the 
essential features of the problem. The difference between legitimate 
and illegitimate simplifications depend not only on the reality to be 
described but also on the state of the science. (Levins 1966, 421–22)

I. Introduction1

Engineers are frequently called upon to develop extremely complex systems 
and provide advice on techno-social interactions to policy makers. Developing a 
model is often a required part of building or understanding a system. Scholarship 
on the role of modeling in policy has shown the importance of reflection on the 
limits of models, especially when using models to inform contested policy goals 
in complex, open-ended systems (Sarewitz, Pielke, and Byerly 2000; Oreskes, 
Shrader-Frechette, and Belitz 1994).2 The way in which models can inform policy 
and engineering work depends on the overall strategy of modeling in a field, which 
we define as a discipline’s use of different kinds of models, including implicit 
modeling assumptions about epistemic goals and the types of abstractions and 
modeling approaches to be used. We developed our definition of ‘strategy’ using 
the late population biologist Richard Levins’s 1966 paper “The Strategy of Model 
Building in Population Biology.” The caveats to using modeling in policy imply 
that engineers should reflect on the overall ‘strategy’ of modeling that they employ 
in dealing with complex systems. Some engineers (De Weck, Roos, and Magee 
2011) have advocated for multidisciplinary modeling approaches, paying careful 
attention to social dimensions of technology including policy and regulation vari-
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ables. While they give some advice on how to model engineering systems, more 
work is needed to fully assess what engineers’ modeling strategies should be.3

There can be many possible modeling strategies, but engineers sometimes 
only see one. For some, the first instinct in trying to solve a complex problem is to 
create a model of that problem; the more detailed a model, the better. Using phras-
ing from Levins (1968), we will refer generally to this inclination as a ‘brute force’ 
modeling approach, where details are added to the model (akin to adding ‘force’) 
as a way to overcome any analytical hurdles. Many students learn from experience 
or mentors not to go ‘too far down the [modeling] rabbit hole,’ and sometimes it is 
suggested, perhaps quoting Einstein, to make a model “as simple as possible, but 
no simpler.” Engineering systems models can differ significantly in focus, from 
water infrastructure, skyscraper design, supersonic aircraft, to rocketry. The ten-
dency to use more complex and comprehensive models exists in many disciplines: 
engineering cost analysis (Hamaker 2010); climate modeling (Dessai et al. 2009); 
and modeling of turbulent fluid dynamics (Argyropoulos and Markatos 2015), 
among many others.4 The push to add in more details as a way of responding to 
problems can influence even an experienced modeler.

We will focus on illustrating one alternative modeling strategy for perform-
ing modeling work that can advise modelers engaged with tricky problems. But 
we must note that there can be many different strategies for modeling. For ex-
ample, Breiman (2001) focuses on two cultures of data modeling and algorithmic 
modeling.5 There can be other modeling strategies that focus on causal structure or 
historical regression One can also pursue a ‘monistic’ strategy by using a single, 
relatively simple model to assess a given problem. Our paper develops one alterna-
tive modeling strategy in part to help engineers as they consider the broader set of 
possible model strategies. By seeing one alternative clearly, a modeler can more 
fully explore the space of possible modeling strategies. And, while the alternative 
strategy sketched out below is not the only possible strategy, it is likely to be 
practically useful in many situations.

Our strategy is an independence-focused, or pluralistic, modeling strategy for 
engineering systems work, involving the use of multiple, independent models. We 
show how it may strengthen engineers’ analysis to support decision making and 
design processes by helping to increase confidence in modeling conclusions, and 
we provide advice on how to implement such a modeling strategy by deliberately 
creating independent models.6 Our approach here follows Levins’s 1966 ‘strat-
egy’ of using multiple independent models to assess the same system. Our advice 
focuses on tangible ways to make models more independent from one another. 
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We develop a framework of types of independence based on a case study of levee 
analysis that occurred after Hurricane Katrina and explore different conceptual 
axes for defining independence among models. An engineer can take this list of 
dimensions of independence, examine the models existing in their domain area, 
and consider whether there are key areas of uncertainty wherein new, more in-
dependent models might be needed. The literature assessing Levins’s ‘strategy’ 
is applicable to engineering due to similarities that exist in modeling across the 
sciences as well as to the practical constraints that exist in engineering.7

In addition to highlighting the need to consider model strategies more gener-
ally, we make both a theoretical and practical contribution by developing a plu-
ralistic strategy in more detail. Theoretically, our approach here also reinterprets 
and builds upon the scholarship surrounding Levins’s ‘strategy.’ Many scholars 
have followed Levins and William Wimsatt’s approach of assessing the nature of 
agreement across independent models (Lloyd 2015; Soler et al. 2012; Odenbaugh 
2003; Pirtle, Meyer, and Hamilton 2010; Weisberg 2006a; Weisberg 2006b; Vezer 
2016; Knutti 2018; Masson and Knutti 2011; Parker 2011, 2018).8 We contend that 
the epistemic benefits of using independent models do not require that the mul-
tiple models all have the same causal structure, which is a claim made by Lloyd 
(2015) and Weisberg (2006b; Weisberg 2013).9 We argue that the core of Levins’s 
strategy is about increased epistemic confidence that arises when independent 
models agree, and show that a study of independence is key to understanding his 
approach. While there are still ongoing debates about the virtues of using inde-
pendent models, the general consensus is that there is some increased confidence 
that results from getting agreement across multiple models; most agree that some 
type of model pluralism is beneficial.10 We also make a theoretical contribution 
by creating a more nuanced typology of how to define independence based upon 
a case study, demonstrating how independence can be multi-dimensional and part 
of a spectrum. Practically, the advice we offer on how to define and building types 
of independence among models can be useful to an engineer struggling to find 
ways of assessing a given system. We offer a way to operationalize the literature 
on robustness, putting this conceptual discussion into practice.

In Section II of this paper, we will review some of Levins’s original concerns 
about brute force modeling strategies. Section III is our discussion of Levins’s 
alternative approach of using multiple independent models, which we refer to as a 
pluralistic strategy. In Section IV, we present a case study of an engineering model 
ensemble that well represents his independence-focused model strategy. Section 
V will show dimensions in which groups of models can be significantly indepen-
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dent from one another in terms of their characteristics and intellectual goals. This 
section offers tangible ways in which models and modelers can be deliberately 
augmented to try to create an ensemble of independent models. Section VI will 
conclude with a discussion of advice for engineering modelers.

II. Levins’s Criticisms of Brute Force Modeling

The last section briefly discussed the strategy of building a singular, more com-
prehensive model as a single strategy, which is a commonly used approach.11 We 
elaborate on that more here, but we do not claim to do a ‘knock down’ argument 
of the approach, which is impossible to do, as modeling strategies may be more or 
less effective depending on the context but are rarely fully non-viable. Rather, we 
describe it in order to set up an illustrative contrast with the pluralistic approach 
to modeling that we’ll discuss later in order to help engineers to notice issues they 
may consider as they choose their own modeling strategies

Based on Levins 1968, we will describe brute force modeling simply as an 
effort to place all possible relevant variables into a single model, attempting to 
describe them with maximum resolution and to make predictions over longer 
timeframes. The aim is to find a model which maximizes generality, realism, and 
precision. Recent examples of brute force modeling include efforts to increase 
climate model accuracy at local levels on 100-plus year timeframes, agent-based 
models of large populations, and turbulence models of supersonic airplanes (Des-
sai et al. 2009; Shackley et al. 1998). Levins’s (1966; 1968) original claim about 
brute force modeling was made in response to the biologist Kenneth Watt, who 
was advocating a strategy of creating one massive model that could attempt to 
model all variables simultaneously, including both ecological variables (such as 
predator/prey totals) and genetic information. These variables all interrelate but 
can change on fundamentally different time-scales.

The boundary between brute force modeling and ‘normal’ modeling of a 
system—wherein one adds and inserts relevant details but still retains many key 
idealizing assumptions and simplifications—can be unclear. One alternative to 
a brute force model would be to create just one single model of low to moder-
ate comprehensiveness; one might label this approach a ‘monist’ approach, as 
it involves a singular but not unduly burdensome model approach. The general 
difference between a brute force model and a relatively simple ‘monist’ model can 
change as time goes on and the overall state of the art and capability of modeling 
approaches and scientific understanding matures. Nevertheless, the examples of 
brute force modeling cited above help show that this approach does commonly 
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occur. Brute force modeling, like monist approaches to modeling, can also be suc-
cessful in certain contexts, particularly if the bounds of a system are well-defined 
and there is a strong ability to iteratively test the model.12

Levins gives three reasons why brute force approaches to ecology would not 
work in 1960s ecology and generally; his reasoning is applicable to models of 
many different kinds of complex systems.13 Levins’s three main arguments are:

(a) There are too many parameters to measure; some are still only vaguely 
defined; many would require a lifetime each for their measurement.

(b) The equations are insoluble analytically and exceed the capacity of even 
good computers.

(c) Even if soluble, the result expressed in the form of quotients of sums of 
products of parameters would have no meaning for us. (Levins 1966, 422)

The lasting significance of Levins’s argument against a brute force approach 
has been debated in the literature (Odenbaugh 2003; Odenbaugh 2006; Weisberg 
2006a). The problem of data measurement, “(a),” for a wide range of topics is 
a still difficult and acknowledged problem in many fields (Sarewitz, Pielke, and 
Byerly 2000). Data availability will likely always place some limit on how much 
data can go into a brute force model. The greater the number of distinct parameters, 
the more data one needs to estimate values of those parameters. Levins’s claim 
in “(b),” that good computers cannot solve many of the problems of population 
ecology, is still relevant in a way. Computing capabilities have increased to the 
point where numerical methods techniques can make approximations that solve 
complicated, analytically insoluble equations. As has been alluded to, the bound-
ary between what is ‘brute force’ modeling versus more tractable modeling is 
historically contingent and evolving and is affected by computation (Levins 1993). 
Regardless, the amount of realism underlying new, extremely complex models and 
their predictions can be difficult to determine.

Levins’s criticism “(c),” that model results may “have no meaning for us,” 
questions the comprehensibility of a model, and highlights a practical risk that is 
exacerbated when following a brute force approach. One way in which a model 
prediction can lack meaning is if it is impossible to provide a causal explanation 
for why the result occurred: lacking such a story, there is still a very important 
sense in which we do not understand the output result. Paul Humphreys (2009) 
has labeled this challenge the ‘epistemic opacity’ of models, where humans are 
not able to follow the logic of the model. While computer models have increasing 
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power and can produce predictions for very complex systems, the difficulty of 
explaining why a result occurs persists due to the difficulty of explanation using 
complex simulations (Winsberg 2010). Simulations exacerbate this problem since 
it can be challenging to make sense of programming code especially if one did 
not build the model themselves. Weisberg (2006a) argues that the crux of Levins’s 
argument in “(c)” may instead be that within a complex model it can be impossible 
to identify exactly what the causal process is that leads to a given result.14 All mod-
els, even simpler models used in the alternative strategy described below, present 
these issues, but the challenges increase as a model increases in complexity. A 
brute force strategy may by its very nature complicate the ability of a modeler or 
stakeholder in a model analysis to clearly assess model causality due to challenges 
in epistemic opacity.

III. Pluralistic Modeling as Strategy:  
“Truth Is the Intersection of Independent Lies”

Out of many possible modeling strategies, one can embrace multiple ways of as-
sessing a system as opposed to focusing on a monist or brute force modeling 
approach. Levins specifically embraces the idea of using multiple independent 
models, which can be a helpful way to assess complex systems. We call this 
approach a pluralistic strategy because it acknowledges that multiple partial ap-
proaches can yield value. Part of the motivation for a pluralistic approach follows 
from the faults identified in the brute force modeling strategy, which reflects a 
tendency to make a model increasingly more comprehensive. Adding more details 
to a model raises challenges in having the right data and in comprehending the 
model, which creates a tension between the comprehensiveness and the overall 
realism and accuracy of the model. Levins has a provocative way of describing the 
tradeoff between model details and model realism. He writes: “No single model 
can meet all the requirements of generality, realism, precision and manageability. 
Therefore we need a cluster of models” (1966, 304). Subsequent authors have 
acknowledged and emphasized this tradeoff (Odenbaugh 2003; Weisberg 2006a). 
We will return to these model requirements later, as they help lay out dimensions in 
which models can be deliberately engineered to be independent from one another.

Levins then sets out to describe three independent models that he uses for 
doing analysis.15 Levins lays out the virtues of using a multi-model ensemble as 
follows:
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[W]e attempt to treat the same problem with several alternative models each 
with different simplifications but with a common biological assumption. 
Then, if these models, despite their different assumptions, lead to similar 
results we have what we can call a robust theorem which is relatively free of 
the details of the model. Hence our truth is the intersection of independent 
lies. (Levins 1966, 423)

The virtue of using independent models is straightforward. Utilizing inde-
pendent models allows one to test conclusions from those models against one 
another, which can provide a source of confirmation when the models agree with 
one another. Levins then goes on to individually discuss his ecological models 
that make assumptions of differing levels of realism and vary in their level of 
quantification and precision, but all of which are based in evolutionary theory. The 
models are different from one another because they have distinct characteristics 
and assumptions, with two focusing on ecological assumptions and only one in-
cluding genetic assumptions. Levins claims that the ability of the models to agree 
upon results can lead to a “robust theorem,” where a shared claim is more likely 
true. A group of models could lead to a more-likely-true prediction for a variety 
of model outputs, including numerical or qualitative claims, as well as more ac-
curate explanations of why things happen in the modeled systems. This concept of 
multiple-determination of results has also been referred to as ‘consilience,’ though 
the literature treats the concepts of independence and consilience in different 
ways.16 The search for independence among groups, or ensembles, of models can 
thus aid in making shared model results more accurate, with the results potentially 
leading to a number of scientific goals such as better predictions, explanations, 
representations, or having tools for intervention (Waters 2004). Levins listed out 
criteria for what models should focus on, including how realistic, precise, and 
general the models are. Section V of paper will expand upon? and operationalize 
the dimensions of the model-building strategy that Levins developed.

Levins did not develop a panacea: the multiple, independent model strategy 
that Levins advocates is helpful but some deeply complex systems may conceiv-
ably defy any. Indeed, one may apply a multiple model strategy to a given problem 
and get no meaningful agreed-upon results, despite the costs incurred from using 
multiple independent approaches. Moreover, all models can be subject to some 
of the challenges discussed above, such as epistemic opacity, ability to get data 
to handle parameters across multiple timelines, etc. An independence-focused 
strategy can be fallible and should not be seen as automatically better than a brute 
force modeling approach. As mentioned earlier, brute force modeling approaches 
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can work well in some systems, such as aircraft design, where experimentation 
and iteration of design are possible. There is a critical difference between how 
epistemic opacity problems apply to the two approaches, as many of the chal-
lenges of modeling are uniquely exacerbated when one pursues a more brute force 
approach. In contrast, using multiple models can reduce the inclination to double 
down on the details of any one model, thus making some of the problems associ-
ated with the brute force model approach less severe.

Again, one may want to pursue a myriad of modeling strategies, but it is worth 
reflecting on the virtues of a pluralistic modeling strategy versus a brute force or 
simple monistic strategy. The limits of when brute force modeling approaches can 
work is often uncertain, and pursuit of a brute force modeling approach can be 
counterproductive when dealing with policy and other complex decisions, includ-
ing those involving value disputes. In situations where it is important for humans 
to have a causal explanation of how the brute force model works, it is likelier that 
a pluralistic or a monistic strategy may be better to pursue. However, there is still 
a need to see what modeling strategies work better empirically and to question 
whether one strategy might have more epistemic limits inherently.17 A pluralistic 
strategy is likely to be preferred over a simple monistic strategy when there is 
sufficient uncertainty such that one believes multiple disciplinary lenses to assess 
the system are needed, which may imply multiple or more comprehensive models 
are needed.

To show how Levins’s idea of model independence can be a more general 
modeling strategy in engineering, in the next section we will reflect on an engi-
neering analysis in which using independent models was key to getting confidence 
in a conclusion.

IV. A Pluralistic Case Study: Three Models Used to Assess a Levee Failure

To develop our framework, we discuss a case where three different types of en-
gineering models were used. In the wake of Hurricane Katrina and the numerous 
levee failures in New Orleans, the Interagency Performance Evaluation Taskforce 
(IPET) systematically analyzed the numerous levee and floodwall failures using 
a set of models (Interagency Performance Evaluation Taskforce 2007). Because 
each model might be fallible on its own, the IPET used multiple models, which 
agreed upon a cause for failure. These included: a finite element analysis model, 
a limited equilibrium model, and a physical centrifuge model, each of which as-
sessed failure at the 17th St. Canal, and each independently agreed on the same 
cause of failure. The 17th St. levee wall failure was particularly important because 
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it fell prior to being overtopped, and it raised questions about whether there had 
been faulty designs or whether there were failure modes for other levees that had 
not been addressed.

We will review these models to assess whether the strategy for model build-
ing (either deliberate or implicit) in this levee failure analysis is akin to a ‘brute 
force’ or a pluralistic modeling strategy.18 Understanding the forms and degrees 
of independence between the models is a conceptual challenge that helps define a 
field’s overall modeling strategy. The extent to which a field’s modeling strategy 
is pluralistic depends on how different the multiple models are from one another 
across several dimensions that we will discuss in the next section, inductively 
drawing off of the details of this case study. Parts of this section were initially 
developed in Pirtle 2010 and have been significantly expanded here.19

In general, the IPET report’s conclusions are generally seen as technically 
sound, though some have challenged the analysis and some of the IPET team’s 
composition and data assumptions. Overall, it is clear that the shared model agree-
ment among multiple models was key for the IPET team’s belief that they were 
correct in their determination of the cause of the 17th St. levee wall collapse. The 
IPET team’s models all supported a conclusion that failure occurred due to a gap 
emerging between the levee wall and the water that allowed pressure to be applied 
against a broader portion of the wall which, combined with an area of weak clay 
soil at the base of the wall, caused the levee to fail. This explanation of a gap 
exacerbating failure was seen by the IPET team as a novel and unexpected con-
tributor to failure, with some commenting that this type of failure was not seen in 
the textbooks and that this failure mode needed to be investigated in other systems 
(Kestenbaum 2006).

There were some common assumptions that went into all of the levee models 
as they were based on the same initial datasets. The IPET engineers had post-levee 
failure information collected from the site along with rough knowledge of flood-
water height at the time of failure. The team had a budget greater than $20 million 
and involved over 150 experts, some of whom were from independent universities 
but many of whom worked for the US Army Corps of Engineers (USACE), which 
had led construction of the levee walls decades earlier. There was collaboration 
across the IPET sub-teams along with the shared data assumptions, both of which 
were later criticized. The models discussed here were used to evaluate all levee 
failures in the aftermath of Hurricane Katrina, but they were critically important 
in evaluating the 17th St. Canal levee failure (Seed et al. 2006). Each model ap-
proach eventually led to a shared conclusion about the likely cause and location 
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of failure for the 17th St. levee. The reports’ conclusions were peer reviewed by 
groups from the American Society of Civil Engineers and the National Research 
Council. Some studies did disagree with and criticized the IPET, which will be 
discussed later.

The following models were used:
Limit Equilibrium Assessment Model (IPET 2007, V-41-V43): Limit equi-

librium analysis (LEA) is a relatively old method of analysis of the stability of 
slopes and embankments developed by civil engineers, valued for its simplicity, 
accuracy, and ease of computation (Duncan and Wright 2005). LEA analyzes pos-
sible failure along a slope by positing a failure plane. Given the known loads 
caused by the weight of the water and of the soil, moment and force equilib-
rium are applied to establish the forces along the postulated shear plane. A shear 
strength is assigned to each portion of the postulated failure surface based upon 
assumed strength parameters and the applied normal forces. A factor of safety is 
calculated as either the resisting moment about the center of rotation divided by 
the driving moment or, for sliding block failures, the integrated resisting shear 
strength divided by the integrated applied shear stress. In a LEA analysis, all pos-
sible (“kinematically admissible”) failure surfaces must be evaluated to find the 
surface with the lowest factor of safety. By definition, a factor of safety less than 
one on any surface means that the applied shear stress along that surface is great 
enough to exceed the shear strength along that surface and cause slippage across 
that LEA failure plane.

Analysis of failure at the 17th St. Canal was done by examining what condi-
tions would generate a factor of safety less than one. The LEA model indicated 
that for the factor of safety to decrease below 1, or in order for the model to predict 
failure at the flood-level heights seen during Katrina, it was necessary to assume 
that a gap emerged between the floodwall and the canal side soil. The inferred 
cause was that the gap exposed the water to more of the wall, allowing pressure to 
be applied at lower and lower levels, where eventually an area of weak soil (clay) 
at the base of the wall started to give way laterally at around 6.5 feet of flooding.

Finite Element Analysis Models (IPET 2007, V-45-V-52): Finite element 
analysis is a commonly used practice in engineering that subdivides an object 
into discrete ‘elements,’ which can be one-, two- or three- dimensional beams 
or blocks. Finite element analysis is in some ways merely a method of solving 
differential equations of force equilibrium, conservation of mass, and continuity 
of displacement collectively across the domain being modeled for the specified 
boundary conditions. The accuracy of a FEA is highly dependent upon the grid 
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resolution employed to model an observed system results depend upon both the 
boundary conditions and the inputs to (demands upon) the system. In the IPET 
report, FEA models were used to generate factor-of-safety values, which are the 
calculated maximum yield strengths of the soil divided by the stresses calculated 
in the FEA model for the flood conditions along an assumed failure surface. Over 
3000 element cells were used across two dimensions in order to assess deforma-
tion, with the strength of the elements being determined by the same soil strength 
data used to inform the other models. The factors of safety in FEA analyses 
conducted by the IPET team were all above one, indicating that failure would 
not occur, except in the case of models which assumed the creation of a gap in 
between the flood wall and the canal embankment. Because the gap exposed an 
area of weaker clay soil, the model assessed how weak soil strength at the base of 
the wall could combine with a gap between the wall and the water. Both the weak 
layer and the gap were needed for the FEA model to predict failure prior to being 
overtopped. Thus, there was some agreement between the FEA and LEA models.

Centrifuge Models (IPET 2007, V-43-V-45): Physical centrifuge models at-
tempt to replicate at a small scale the performance of large geotechnical systems, 
e.g., flooding of the levee. Because of difficulties in physical modeling of the in 
situ geometry and exact properties of the ground, the strength of centrifuge testing 
lies primarily in identification of mechanisms of failure, as well as in calibration 
and validation of numerical models, i.e., by numerically modeling the centrifuge 
test. A centrifuge model test of an idealized levee system was conducted by the 
IPET team (IPET V-43). Materials with strengths close to expected levee strengths 
were used, with a preference for choosing materials that were well understood in 
centrifuge testing, such as Nevada sand.20 In a similar way to the FEA and LEA 
models, the centrifuge model showed the formation of a gap between the water 
and the wall that formed, which then led to slippage on a lower level of clay. This 
thus agreed with the other two models, but it predicted the gap formation in a 
stronger way (i.e., having it happen) than merely assuming that a gap foundation 
was necessary in order to get the model to predict a failure. The model likewise 
suggested that the location of failure was along a layer of clay at the bottom of the 
structure, meaning that all three models were in agreement.

A. How Using Independent Models Increases Confidence
To synthesize the results cited above: the 17th St. Canal breach was analyzed 
by IPET using three different models. Each of the models used initial conditions 
(levee cross section size, soil properties, etc.) based upon observed data from the 
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field. Thus, in a certain sense, the models were based upon the same initial data 
assumptions, and in that respect were not significantly independent from one an-
other. However, the underlying analytical principles behind each model are sig-
nificantly different from one another. The principles for the models at hand are:

• FEA models solve equations of stress and strain (which incorporate more 
physical phenomena than the LEA static equilibrium analysis) across 
small elements throughout the levee.

• LEA solves static equilibrium equations over an aggregated plane where 
failure is assumed to occur, determining a factor of safety for a given load.

• Centrifuge models are idealized physical models subjected to similar 
loading as experienced in the field, with the experiment results used to 
identify the governing mechanisms of behavior in the field.

The physical model is perhaps fundamentally different from the mathemati-
cal models, and there is some literature that explores the different types of knowl-
edge that physical ‘things’ can carry in contrast to numerical models (Baird 2004). 
While Levins’s original argument for using multiple models was only applied to 
mathematical models, the concept is easily extended into thinking about physical 
models.21 The LEA model solves broad equations of static equilibrium along as-
sumed failure slopes, which thus avoids calculations of strains (and only calculates 
stress on the postulated failure surface) and does not attempt to understand the 
integrated system behavior throughout the levee. The FEA model includes static 
equilibrium equations but is more comprehensive in its stress analysis; however, 
given its greater resolution and more detailed input soil property requirements, it 
is perhaps more subject to errors in soil strength calculations.

The narrative of the IPET report strongly highlighted the agreement of each 
model on there being a gap between the wall and the levee and that a weak soil 
layer was needed for failure to occur, which they then confidently decided was 
the explanation for the failure. They advocated a deeper study of gap formations 
as a contribution to future failures. The IPET team’s implicit argument is that the 
agreement of the three models upon a shared conclusion gave reason to believe 
that the shared conclusion was more likely true. This is an embodiment of Levins’s 
conceptual framework, which provides several ways to characterize the situation. 
How independent are the models from one another? They each use different levels 
of resolution, with the LEA model likely being the most abstract, as fewer details 
of the system are modeled. The FEA model was relatively less abstract in terms 
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of its modeling many different individual elements, and the centrifuge model had 
a scaled down physical replica of the levee wall, which reflects the system in a 
different way. The analytical weaknesses of each model do appear to be different 
based upon how the models work. No set of models can be completely indepen-
dent (or different from) one another (Goodman 1970), as they all involve some 
common understandings from physics and other characteristics. The differences 
between these models was enough to warrant increased epistemic confidence as a 
result of a robust agreement between what are largely independent models. When 
independent models, each with their own inadequacies and idealizations, agree, 
their agreement significantly increases one’s confidence in model results.

There are strong criticisms of the IPET report which should be considered, 
which complicate its use as an exemplar of independent analysis. Some believe 
that the IPET used incorrect data: Berkeley professor Bob Bea argues that there 
was a weak layer of clay soil located higher along the levee wall which was re-
sponsible for failure and that a simple, negligent design flaw likely caused by the 
USACE was responsible (Kestenbaum 2006). This claim can be read as implying 
that the models actually were not sufficiently independent from one another, as 
they relied on the same initial assumptions. The IPET report addresses this claim, 
disagreeing with Bea’s evidence for a weakness that should have been detected, 
and recent publications have backed up the IPET’s overall conclusion on failure 
mechanism.22 Others were concerned that that the IPET team had too strong a 
membership from the USACE, which was responsible for the original levee de-
sign. The criticisms here are akin to arguing that there was not sufficient inde-
pendence among those performing the analysis and reviewing it. In both of these 
criticisms, one way of revising the IPET’s work would have been to push to create 
more independence in data assumptions and team membership.

This levee failure analysis is a good engineering example of what a pluralistic 
modeling strategy can be, which was especially effective here given a complex 
problem with incomplete data.23 An alternative brute force modeling approach 
could have ignored the push for multiple models, although that likely does not 
make sense as a conceptual strategy.24

V. Dimensions of a Strategy; or, Knobs to Vary to Create Independence 
Among Models

This section clarifies several of the ways in which one can deliberately engineer 
one’s models to be independent, recognizing that there are situations where no 
modeling strategy can work.25 By inductively reflecting on the above case study, 
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we will discuss the two main areas for describing one’s model-building strategy: 
first, diagnosing what independent principles and methods underlie the models; 
and second, assessing the epistemic goals of a model. We define our notion of 
model independence as non-binary and existing on a spectrum where models can 
be more or less independent, but with some cases such as the levees example 
embodying a significant amount of independence. Complete independence is not 
possible because, as Giere and Goodman note, everything can be seen as similar 
to something else in some respects and to some degrees.26 The following is a set 
of key dimensions (or ‘respects’) in which models can be independent (or dis-
similar) from one another. A core part of our contribution is developing the below 
framework of independence. Other literature uses the notion of independence 
both directly27 and indirectly,28 but not synthesized in a way to provide advice 
to modelers. The value of independence along each of the above dimensions of 
independence needs to be carefully assessed and thought through. The pursuit of 
independence among models is an art—its cost must be weighed by the model 
builder/user to assess what areas of uncertainty need most to be addressed. A 
group of experts with sufficient accountability to the public and an understanding 
of the ways models may be independent from one another is likely best positioned 
to determine how much independence is needed.

A. Identifying Independence among the Models/Modelers:  
Physical/Social Characteristics
Differences in the physical and social characteristics of the models and modeler 
groups are the first set of definitions of independence that we explore. Differences 
among the modelers themselves also can be key, as the modelers shape a model 
using their own experience and tacit knowledge. Drawing on Pirtle 2009 and 
Pirtle, Meyer, and Hamilton 2010, we have elaborated on a set of dimensions by 
which models/modeler groups can be independent from one another. Four general 
categories are used:29 causal mechanisms underlying representations, who is in-
volved, what is represented, and the knowledge context contributing to the model 
creation and use. We will describe these and then later show how independent the 
levees models are in these regards.

‘How’: Causal mechanisms and physical principles underlying representa-
tion. The underlying assumptions about how the system works can differ from 
model to model. Many models will agree on fundamental issues such as principles 
of conservation of mass and energy (both of these underlay the LEA/FEA models 
described above). A physical model like the centrifuge, being embodied in the 
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world, may draw upon unknown features that a model designer may not be aware 
of. Hacking (1985) refers to the epistemic power of using multiple microscopes 
to observe the same phenomenon when the instruments are based on “unrelated 
chunks of physics”; the odds of seeing a false phenomenon through physically 
different perspectives is much lower.

‘Who’: Historical and sociological perspectives. Modelers’ training and 
working approaches can encourage shared strategies, which can actually decrease 
independence across models. The epistemic culture behind a modeler’s approach 
and the goals of their research can be critical (Knorr Cetina 2009). At the same 
time, collaboration can increase the quantity of critique of ideas and the prolifera-
tion of different approaches. Having models created based upon another program’s 
source code and approach is a source of interdependence. Shared history among 
modelers can affect all other parameters, as debates about the meaning and na-
ture of different assumptions can vary significantly. It is likely best to think about 
independence among models and modelers jointly, to capture the broad interac-
tion between the analyst and the model. In the IPET team, the models themselves 
shared some common history as being used in geotechnical engineering and the 
team members themselves had broad social connections to the USACE and other 
organizations that had long used and developed those tools.

‘What’: Aspects of Representation. Parameters. Specific assumptions 
about a physical system that are below the level of a general scientific principle can 
often be distilled into parameters. These are a key part of how physical principles 
are incorporated into a model. For example, assessing the yield strength of soil 
will result in a parameter that can be input into the FEA/LEA models described 
above. Parameters are specific variables which can be input into code that reflects 
more general scientific laws (which define the equations used in the code). The 
centrifuge model used materials with strengths close to but not exactly similar to 
the strengths assumed in the models.

Scope and idealizations: The way that models resolve the system can be 
different. This can involve models that use different system boundaries and resolu-
tions, or that make different idealizations which adjust features of the real-world 
system for ease of modeling. FEA models can break down the system into a set 
of discrete chunks, while LEA models only seek to assess a single failure plane. 
Having different scope and idealizations can also include models that operate at 
different levels of abstraction, wherein one model may have many details of a 
component of the system and another model may treat it at a significantly ab-
stracted and simplified level (Abbott 2007).30 It may be the case that having differ-
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ent models at different levels of resolution is important to pursuing a Levins-like 
epistemic confidence for an agreed upon claim.

Numerical coding schemes: If physical equations are resolved through differ-
ent coding schemes or software packages, this can be a source of independence. 
Truncation errors can aggregate differently over space and time based on the nu-
merical coding approach chosen. Given that the models used in the levee case were 
so different, this was not an issue. Further, other software packages were used to 
replicate the FEA and LEA analysis models, which confirmed the results there.

Knowledge Context for Model Creation: Data. Using different data, in 
terms of variations in physical sources of data as well as locations and time periods 
used, can be one way for model analyses to be independent from one another. The 
use of different data does not occur in the IPET models, as all were developed 
after the levee failure and using the same post-failure data set. The Bea criticism 
is that there was an additional area of soil where a problem occurred, and that this 
data was missing from all three of the IPET models. Edwards (2010) explored the 
role that models of data can play in informing larger, more comprehensive models, 
highlighting the complexity of assumptions used in many kinds of models.

Again, if one wants to pursue a pluralistic modeling approach, then one can 
choose to deliberately build independent models that have different assumptions 
and characteristics along the above dimensions. The levee models were most inde-
pendent from one another in their use of different scope/idealization of the system, 
though the physical model may draw on separate physical principles as well. If 
one wants to explore having additional independence among ‘who’ is involved 
and their associated history and disciplinary approaches, one can draw in new ana-
lysts with different histories, backgrounds and institutional affiliations to perform 
or verify analysis. Using different timeframes and types of data can help show that 
one’s theoretical understanding in the model and associated system is accurate.

B. Epistemic Desiderata of Models: Building Models that Focus on Realism, 
Precision, Generality, or Manageability
We will now introduce new dimensions of independence that tie to the goals of 
a model. The dimensions of independence noted above are physical and social 
characteristics of models and the modelers who use them, which collectively are 
relatively tangible and definable. These dimensions do not deal with epistemic 
qualities of a model, where ‘epistemic’ refers to the way in which the model helps 
to create knowledge and what the nature of that knowledge is. Levins called these 
epistemic qualities of a model “desiderata” and discussed them independently 
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from the ‘assumptions’ within a model. The four desiderata that he explicitly 
mentions are generality, realism, precision, and manageability: Do we believe the 
models are very realistic in nature? Do they have as much precision as is possible? 
How generalizable is the model to other systems? Is the model manageable to 
think through and to practically operate? All of these are epistemic qualities in 
that they are tied to the overall knowledge embodied in the model and to what 
kinds of knowledge and claims that the models can be used to create. In contrast 
to these epistemic desiderata, the earlier dimensions of independence are more 
akin to characteristics that the models/modelers bring to the table (almost akin to 
being ‘inputs,’ with the desiderata being about the process to create outputs). The 
epistemic qualities of a model can only be assessed holistically, considering all 
aspects of a model and the state of the existing science.

There are practical reasons to care about which model desiderata one focuses 
on, as Levins argues that these model goals can be in conflict:

It is of course desirable to work with manageable models which maximize 
generality, realism, and precision toward the overlapping but identical goals 
of understanding, predicting and modifying nature. (Levins 1966, 422)

Levins argues that trade-offs must be made when choosing between differ-
ent goals, which he calls desiderata, and that one model cannot achieve every 
goal.31 Having multiple models that focus on different desiderata can reduce this 
conflict. The main reason Levins states that there will be a tradeoff in focusing on 
specific goals is due to limits in what any one person or group can feasibly do in a 
given moment of time. Levins does not prescribe limits to how many desiderata or 
epistemic goals one can have for a model, and views his four desiderata (general-
ity, realism, precision and manageability) as non-comprehensive, meaning that 
additional desiderata should be addressed.

We will elaborate on each model desiderata here as additional dimensions by 
which models could be made independent from one another. A pluralistic model-
ing strategy can have different models/modelers focus on different goals for build-
ing their model, with some focusing on encouraging realism and others focusing 
on manageability or precision. When surveying an existing set of models, one 
can assess how independent the models are from one another in these epistemic 
goals. Our definitions here are inspired by Levins, but we build on his definitions 
significantly.

Realism: There are three different ways to conceive of realism in a model: as 
the inclusion of all the relevant causal factors; as the exclusion of false assump-
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tions; and as accuracy in depicting the system, including in making predictions. 
Including more variables and excluding false assumptions both increase the real-
ism of a model. These two objectives are related but separate: suppose you are 
modeling a block sliding down a plank (a classic mechanics problem). You can 
include the force of gravity. Sometimes you make simplifying assumptions that 
the plank is frictionless. Others exclude the friction of the air against the block. 
As Giere (1999) notes, there is no limit to how many causal variables one could 
ostensibly include—why not include the infinitesimal effect of the moon’s gravity 
on the block? Including more variables increases realism, to a point.

The second aspect of realism, avoiding false assumptions, can be seen in 
how fluid mechanics models flow through a pipe. These models almost always 
assume that the liquid itself is a continuum. This is strictly a false assumption: 
the liquid is composed of atoms, and of the invisible spaces between the atoms.32 
Sometimes, including a deliberately false assumption is the only way to make a 
problem tractable. In many cases this assumption has no effect on the accuracy of 
a model’s predictions but is nevertheless not true.

The last dimension of realism is accuracy in predictions, which can only 
be assessed through experimentation and testing. This dimension is often what 
managers care the most about when reviewing the results of a model, but for some 
long-term or sufficiently complex predictions it can be difficult to assess how ac-
curate a model is (Sarewitz, Pielke, and Byerly 2000).

Precision: this dimension deals with different ways in which a model can 
provide detail about what is happening in the world. We will describe four aspects 
of how it can manifest in model design/model operation. The first definition of 
precision is the ability of the model to provide the same answer given the same 
initial conditions, which is a classic definition of precision. A second definition 
relates to the resolution of a model. Low-resolution models may not divide a sys-
tem up into as many parts or element, whereas a high-resolution model can have 
many thousands of elements. Predictions for high-resolution models can provide 
predicted ‘micro’-details about behavior in a system. In finite element modeling, 
newer models tend toward higher resolution in an attempt to identify more precise 
and narrow effects within a system. In such models, one can assess accuracy of the 
results at both the macro-level (i.e., did the levee break?), and also at the micro-
level (i.e., did the levee break at the exact same point that the model predicted?).

A third element of precision is the ability to describe uncertainty. Some 
models do not include uncertainty estimates and merely produce point-estimate 
predictions of system behavior, whereas other models produce uncertainty inter-
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vals underlying each predicted variable. Models that incorporate random chance 
within their operation can describe uncertainty in a different way: a Monte Carlo 
simulation can be used to run the model numerous times and by the frequency of 
observed results predict the probability of a given result occurring in reality.

Lastly, a fourth aspect of precision is the degree of quantitativeness of a 
model, which is a vague but important idea. When a geotechnical engineer does 
a limited equilibrium analysis of a possible levee failure, she will calculate the 
stress on the levee and see if it is greater than the yield strength of the soil along 
an assumed failure slope. If actual stress is greater than the yield strength, or the 
Factor of Safety is less than one, then the engineer will know that deformation and 
failure will occur. If the engineer goes further to quantify the predicted amount of 
deformation (which the LEA model cannot do, but the FEA model can), this is 
a more ‘quantitative’ conclusion than the simple qualitative estimate of whether 
deformation or possible failure will occur. However, quantitative models are not 
always more desirable than more qualitative models (Puccia and Levins 1985).

Manageability of a model is another key consideration. The speed with 
which a model run can be performed on a given platform is a reflection of the com-
putational intensiveness of the program. Faster run speeds can make the model 
easier to use. Another key dimension of manageability is the comprehensibility of 
a model and how well a human can understand the model. This can involve several 
traits, including ease of use and comprehensibility of results and understanding of 
the reasons why the model behaves in a given way. The epistemic opaqueness of 
a model, as described above (Humphreys 2009), is thus tied to the manageability 
of the model. Levins suggests that brute force models can be too complex for a 
human to understand the meaning and significance of results, which we would 
characterize here as a manageability concern.

C. Framework for Encouraging More Independence using the Levees Case
To make the above forms of independence seem more tangible, we review how 
they apply to the levee case and describe how one could try to deliberately change 
the models to have more independence. Models and modelers can be independent 
of one another by being different in their physical/social characteristics as well as 
in the epistemic goals they focus on. Table One below lists the different dimen-
sions of independence noted in the prior sections, then applies these dimensions 
to the levee case and discusses the extent of the models’ independence from one 
another. The question of how to build (or ‘engineer’) more independence into the 



Engineering Model Independence 211

set of models is addressed in the last column. In some dimensions, the models 
listed below already represent fairly independent forms of analysis.

In some cases, as noted in the table, it is unclear how more independence 
among the models could be achieved. In assessing the degree of independence 
among models, there are likely not to be simple, easy-to-assess ‘yes or no’ bina-
ries that of whether models are independent from one another. The dimensions 
here lay out the different types of independence that can matter for a modeling 
group. One can create a similar table for other cases or groups of models with the 
dimensions of independence applied to the models under examination. Such an 
analysis can help to determine how the models differ and what additional type of 
independence might be useful. A modeler can develop a qualitative sense that one 
group of models may have significantly more independence than another group, 
or see areas where a group of models lack meaningful independence.33 The levee 

Category of 
Independence

Specific Dimension of 
Difference

By Dimension, How 
Independent Are the 

Levees Models from One 
Another?

Ways to Engineer More 
Independence among the 

Models

Characteristics of the Modelers/Model Teams

How: Causal Mechanisms 
Underlying Representation

Basic Physics. Core causal 
mechanisms that underly 
the model.

Uses significantly different 
ways of resolving the 
system across FEA and 
LEA, with physical 
model involving its own 
embodied assumptions and 
behaviors. Key principles 
include: LEA: Calculates 
slippage across a failure 
slope. FEA: divides the 
system into many different 
elements, with stress and 
deformation occuring in 
each one.

Already seems largely 
independent, unclear 
how to become more 
independent than having 
physical and numerical 
models alongside different 
ways of resolving the 
relevant phenomena.

Who:
Historical/Sociological 
Perspectives

Historical separation 
of the tools is hard to 
establish as they’re from 
a shared disciplinary past. 
Sociologically, most IPET 
team members worked 
for US Army Corps of 
Engineers with other 
independent members, 
alongside outside peer 
reviewers.

For historical differences 
in the tools themselves, 
have a different 
disciplinary group model 
and assess the same 
situation using analysis 
approaches outside of 
geotechnical engineering. 
Sociologically, having 
analysts be less connected 
to the US Army Corps of 
Engineers  might lead to 
more independence.

Table One: Dimensions of independence and knobs to increase independence, applied to the case study.
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Category of 
Independence

Specific Dimension of 
Difference

By Dimension, How 
Independent Are the 

Levees Models from One 
Another?

Ways to Engineer More 
Independence among the 

Models

What: Aspects of 
Representation

Parameters

Each model parameterizes 
slightly different 
phenomena, but all of 
it is tied to assumptions 
of soil strength and 
assumed height of water 
at over-topping. FEA 
assigns yield strength to 
each element. Arguably 
there are no parameters 
in the centrifuge model 
although materials are 
chosen to have strengths 
close to expected strengths 
of the actual soils; scaling 
parameters are used 
to calculate size and 
centripetal force used.

Already seems largely 
independent.

Scope and idealizations

This may be the area of 
greatest independence 
among the models, with 
each resolving different 
parts of the system. LEA 
abstracts the system into 
a series of failure slopes, 
FEA idealizes it into a 
series of homogenous 
grids, and the physical 
model may idealize in a 
very different way.

Already seems largely 
independent. Different grid 
sizes could be used, as well 
as simplified abstracts of 
each type of model.

Numerical coding

Not applicable here as the 
models are so different that 
they do not attempt to code 
the same assumptions/
parameters. Alternative 
LEA/FEA software 
packages were used to 
spotcheck the analysis.

Not as applicable in this 
context.

Knowledge Context Data
Little independence as each 
model used the same data 
to inform its analysis.

One could use different 
datasets to inform the 
analysis, perhaps assessing 
the data at different levels 
of abstraction.
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Category of 
Independence

Specific Dimension of 
Difference

By Dimension, How 
Independent Are the 

Levees Models from One 
Another?

Ways to Engineer More 
Independence among the 

Models

Epistemic Goals:

Realism

Comprehensiveness: 
includes as many features 
as possible

Models differ in how 
comprehensive they 
try to be. The LEA 
definitely tries to be less 
comprehensive than the 
FEA model. The centrifuge 
model, being physical, may 
be said to be much more 
comprehensive in terms of 
capturing actual features 
of the soil-structure 
interactions.

Similar to the scope 
category above, models 
already seem independent. 
One could add more grid 
cells into the FEA or make 
the centrifuge model even 
large and incorporate more 
nuances into that model.

Idealizations (avoids false 
assumptions)

It is unclear how the 
models differ in their 
attempts to minimize 
idealizations. The LEA 
model idealizes the 
system by ignoring many 
features but the FEA 
model introduces new 
assumptions/idealizations 
by creating new grid 
cells. (Ergo, each grid 
cell is assumed to be 
homogenous). Beyond 
scaling, it is unclear what 
idealizations are made in 
the centrifiuge.

Already seems largely 
independent.

Accuracy—result is 
believed to be true

All three models supported 
a common claim 
about cause of failure, 
although their individual 
predictions varied in 
whether they indicated 
failure would occur under 
assumed conditions vs 
predicting exactly how 
failure occured. Future 
work would criticize 
assumptions on strength 
but most agree predicted 
failure mode likely is 
accurate.

Accuracy/confidence 
in new, hypothetically 
independent models is hard 
to assess a priori.
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Category of 
Independence

Specific Dimension of 
Difference

By Dimension, How 
Independent Are the 

Levees Models from One 
Another?

Ways to Engineer More 
Independence among the 

Models

Precision

Repeatability of result; 
granularity of results; 
discusses uncertianty; 
quantitativeness of results.

The models differ in 
ways in which they can 
provide more resolution 
and information about 
uncertainty. The LEA 
model shows where the 
failure slope is likely to 
be, but cannot describe 
the motion of the system 
as FEA and centrifuge 
can. None do a good job 
of capturing uncertainty 
bounds in the final 
analysis.

Already seems largely 
independent, but could 
do more to capture 
uncertainty.

Manageability
Run speed; 
comprehensibility of the 
result.

The models differ in the 
amount of effort needed to 
set up and run the model 
and assess its input. LEA 
is simpler and easier to 
manage than the other two. 
The centrifuge actively 
predicts the formation 
of the gap whereas the 
other wo models can only 
explain failure if they 
assume a gap occurs, 
which may make it more 
understandable.

Already seems largely 
independent.

example had significantly independent types of models in terms of the causal 
mechanisms underlying the models and aspects of representation, but the overall 
IPET effort was criticized for a lack of independence in other areas, including 
the lack of social independence in terms of having different teams perform the 
modeling analysis as well as the use of similar data assumptions on soil strength 
in each model. Regardless, criticisms of the 17th St. levee failure analysis hinge 
on different aspects of independence as discussed here, including a potential need 
for more independence.

VI. Engineering Model Independence

Getting clear about what models, and model ensembles, can and cannot do should 
be an important part of the agenda for better using models in policy-making and 
the creation of complex systems (Sarewitz, Pielke, and Byerly 2000). In Levins’s 
phrasing, every field implicitly has its own strategy of model-building which af-
fects how models are used in design and policy. Given the pressures and time con-
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straints of professional life, it is possible for a discipline’s model-building strategy 
to be more ad hoc instead of deliberately structured.34 We laid out one possible 
modeling strategy that focuses on using models that are meaningfully independent 
from one another. Independence among models is a complex issue involving mul-
tiple social, technical and epistemic dimensions. We laid out a taxonomy of types 
of independence, drawing from a case study of the models of the levees at the 
17th St. Canal as a case study for thinking through what an alternative modeling 
strategy might look like. The criticisms of the levee analysis can be seen as a call 
for additional independence in terms of social actors and the types of data used. 
On the whole, reliance on multiple, independent models served to help the IPET 
team become more confident in their analysis.

A modeler can explore new strategies of their own, and sometimes employ-
ing a brute force modeling strategy is desirable. As noted above, issues such as 
computing power that affect the desirability of a brute force modeling strategy can 
change over time, and likely is tied to our ability to comprehend the complexity 
of a system. When a modeler cannot give a clear causal story using a brute force 
model (Winsberg 2012; Humphreys 2009), it may be beneficial to use a pluralistic 
strategy. When using modeling to inform policy decisions that have value disputes 
embedded within them, the pluralistic strategy’s multiple, simpler models may 
help make the analysis more transparent to decision makers, improving the sa-
lience of the analysis (Sarewitz, Pielke, and Byerly 2000).

If a modeler or group decides it is worthwhile to implement a pluralistic 
modeling strategy, our advice is to engineer independence into the building and 
use of one’s models. This advice is based on the assumption that the more inde-
pendence there is among models, the greater the confidence in the overall results. 
If one wants to deliberately engineer independence into a group of models, then 
varying the assumptions of models as well as their epistemic goals, as discussed in 
the dimensions listed in Table One, is one good way to accomplish that. Levins’s 
original analysis and follow-on literature provide some justification for developing 
diverse models in this way, but they do not offer ideas on how to actually engineer 
models to be different from one another. A key part of our contribution to the 
Levins literature is our provision of a more detailed taxonomy of independence as 
well as a motivation for utilizing Levins’s notion of independence and for creating 
independence in practice. Future experimental work could try to identify which 
of the parameters of independence—characteristics and epistemic goals—matters 
most when using multiple models and can also assess whether the deliberate engi-
neering of independence into a model group can be useful in practice.
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There is of course a tradeoff involved in seeking new and independent mod-
els: it takes time and effort to pursue independence, there is never an obvious point 
to determine when one has enough or the right kind of independence, and there is 
always a chance that one may model a system and fail to gain insight into it. As a 
result of these challenges, the answer to whether more independence is worthwhile 
changes depending on context, and an expert or manager in the given modeling 
area may be in the best position to assess what level of independence is enough.35 
However, our experience indicates that there are many situations where sufficient 
resources exist to support a deliberate focus on independence among models, 
whether aimed towards assessing the amount of independence among models that 
already exist, revising existing models to be more independent, or even creating 
new, independent models. Independence may not be as frequently pursued in those 
ways because of implicit assumptions about what the goals of modeling should be. 
Getting modeling experts and funders to reflect on what types of independence 
matter for the system they are addressing could be important and can help pro-
vide a way for modelers to talk to stakeholders about uncertainty. Managers and 
policy-makers can also ask questions of modelers about the different dimensions 
of independence being used and explore whether there is enough independence. 
By deepening discussion of relevant types of independence, one can help increase 
the transparency and accountability of modelers toward outside stakeholders.

Beyond potential practical implications, we have made several theoretical 
contributions. First, we clarified the literature on Levins’s analysis by highlight-
ing independence as core to his approach: increased confidence in the accuracy 
of model agreement occurs only if models are at least partially independent.36 
Second, the dimensions of independence that we use to show how models can 
be independent from one another are also new to the literature. Much of the lit-
erature has focused on very coarse-grain notions of independence (Odenbaugh 
and Alexandrova 2011). While we cite Levins’s notions of epistemic desiderata 
and develop them as part of these dimensions of independence, we refined them 
significantly by breaking out sub-categories of some of the desiderata, changing 
them based on our own judgment and the case study at hand. Third, we show how 
independence is qualitative and multi-dimensional. Our case study showed how 
multiple, competing dimensions of independence came into focus in the levee 
case study, with some outside groups criticizing the IPET report for a lack of inde-
pendent social groups among those who were performing the analysis even while 
the models differed greatly in what and how they represented and modeled the 
levee system. Further theoretical research in this area could in turn be practically 
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Notes

1. All opinions expressed in this paper are those of the authors and do not neces-
sarily reflect the views of NASA or the United States Government.

2. Due to reasons of space, we will not review critical literature about the role of 
models in decision making or policy process. Interested readers can refer to Oreskes, 
Shrader-Frechette, and Belitz (1994), who argue that “the primary value of models is 
heuristic,” and advocate caution for modelers trying to get involved in aiding policy 
decisions. While Oreskes, Shrader-Frechette, and Belitz offer some valuable commen-
tary about the impossibility of verification for models of open systems, they do not 
provide any positive suggestions about the use of models in the policy process. Care-
ful, deliberate reflection on model-building strategy, leading to model groups with 
more independence or diversity among the individual models, can be one path toward 
giving positive suggestions on how to model for policy.

3. De Weck, Roos, and Magee say: “Engineering systems attempt to bring these 
perspectives together into a set of complementary methods and a unified approach 
that yields a richer set of insights than what could be obtained from each of the clas-
sical disciplines alone” (2011, 97). Not many engineering systems monographs offer 
systematic advice on modeling. In their chapter on modeling, they give advice about 
how to establish the system boundary of the model, assessing functions (and subfunc-
tions) of the system, defining the structure of the model; and quantifying temporality 
through simulation. They do not touch on the epistemology literature, including the 
issues touched on here by Levins, nor on the epistemic goals of models as described 
here. For a detailed discussion for constructing models in ecology, evolutionary biol-
ogy, and epidemiology, see (Otto and Day 2007).

4. There are also model-based systems engineering (MBSE) efforts trying to 
develop a unified language, connecting different functions of a system (Estefan 2008). 

important. While more empirical work needs to be done, we think it likely that 
a deliberate reflection on modeling strategies would lead some communities to 
emphasize independence-focused strategies. We show a way in which ‘conceptual 
engineering,’ in this case of engineering independence into groups of models, can 
help engineers better serve the needs of society in a variety of areas.
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We do not examine model-based design in detail in this paper, but some of the same 
questions about how many (and how independent) MBSE models should be used can 
still apply.

5. For Breiman, a data modeling strategy focuses on performing regression 
analysis between inputs and outputs, assuming some type of direct connection be-
tween inputs and outputs. An algorithmic modeling strategy can have a much more 
complex setoff decision rules, reflecting a deeper set of factors. These two cultures are 
not meant to be exhaustive of all modeling approaches, and are focused on Breiman’s 
field of statistics.

6. We focus in this paper on a strategy of using deliberately independent models 
to assess the same system, but there is a related phrase that may apply here. Many 
modelers use the phrase ‘model triangulation’ or multi-method research to compare 
model results of the same system from different models. While these are commonly 
used terms in modeling, Balaban, Hester, and Diallo (2015) note that “the current level 
of theoretical, methodological and pragmatic knowledge related to a multi-method 
modeling and simulation approach is limited as there are no clearly identified theo-
retical principles that guide the use of multi-method M&S approach” (1633) There is 
relatively little literature discussing model triangulation itself as a concept and explor-
ing what it means, but we note some of that literature in note 28.

7. Recent conceptual treatments of modeling (Weisberg 2013; Winsberg 2010) 
discuss engineering examples but don’t find a meaningful difference between scien-
tific and engineering models. Weisberg focuses in detail on geotechnical engineering 
models of the San Francisco bay, which he casts as part of a category of concrete mod-
els, of which our levees example can be relevant. Pirtle (2010) notes examples where 
engineering models are made using different types of assumptions and knowledge 
sources that differ from science but leaves any more meaningful differences between 
science and engineering as an open question. Given that engineers have practical goals 
and constraints similar to those that Levins lays out, as discussed later, we think the 
application of Levins’s model pluralism to engineering should face no immediate con-
ceptual barriers.

8. Lloyd’s analysis of independence among climate models is valuable, but it 
largely attempts to summarize epistemic practices used already by climate scientists, 
and does not try to provide practical advice on how better to perform modeling. The 
ability to give advice on how to increase independence in groups of models is part of 
the new contribution being suggested here.

9. Lloyd and Weisberg seem to focus on Levins’s discussion of “a common 
biological assumption” among models (Levins 1966, 423). Lloyd (2015) focuses her 
reading of robustness on having a “common structure” and “causal core” among mod-
els (59), implying that the value of agreement among multiple models requires that 
they share a causal core. This partially follows Weisberg (2006b), for whom the “com-
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mon structure” among models is the shared causal “structure common to the models 
that gives rise to the robust property” (737) that is agreed upon across models. Our 
reading of Levins 1966’s use of models (see note 15) and ensuing analysis does not 
make us believe that identifying a common causal core was central to his analysis. 
Further, we believe that Humphreys (2009), Winsberg (2010), and Odenbaugh and 
Alexandrova (2011) raise doubts about the achievability of clearly identifying shared 
causal structures across models. Regardless of the viability of Lloyd’s and Weisberg’s 
readings and what Levins’s original intent was, we do not make a common causal core 
to be central to our analysis of the value of robustness and independence, where we 
focus more on ensuring the use of genuinely independent models. Such a focus can be 
supported by Levins’s claim of having “alternative models each with different simplifi-
cations” (Levins 1966, 423). Pirtle (2009) reviews other concepts of independence that 
can support this approach, such as Hacking 1985 and Wimsatt 2007, which show the 
value of assessing independence beyond assessing causal structure of a model, such as 
by increasing likelihood of a correct claim as a result of having more lines of evidence 
each with separate probabilities of truth.

10. As was reviewed by Odenbaugh (2003, 2006) there has been a long running 
stream of criticism and defense surrounding the notion of independence as robustness. 
Soler et al. 2012 have reflected on this, and others criticize the virtue of independence 
focused approaches (Stegenga 2012 and Orzack and Sober 1993). The general consen-
sus in the academic literature tentatively seems to be in favor of the value of a robust-
ness-as-independence based approach as having some value. Enough if no definitive 
proof can be made for its value, robustness is invoked commonly enough by scientists 
that it merits research (Pirtle, Meyer, and Hamilton 2010 illustrate these claims in 
climate science), and it may have value as a heuristic for discovery the value of which 
should be assessed empirically for a prospective, new situation (Wimsatt 2007).

11. There is an additional educational reason to discuss a brute force tendency in 
modeling: Some of the authors, in reflecting on being students and on observing how 
others learn modeling, know that it can be a very common instinct for new students to 
‘double down’ on adding details into a model. While some students have professors 
that caution against putting too many details into a model, many intuitively feel that 
they can overcome complexities by maximizing the fidelity of the model. This also 
biases them to look to the model for the answer as opposed to other types of analysis 
that may be less formal. Awareness of alternative epistemic strategies can help miti-
gate those biases.

12. Brute force modeling may be easier to implement when a system is available 
to be experimented on, or tested, on a frequent and recurring basis. Automobiles, air-
craft and skyscrapers are complex yet engineers have comprehensive, realistic models 
that can be used to make reliable and safe designs. However, in each case, engineers 
use experimentation and past experience to validate their design at multiple steps. 
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The ability to test and intervene on a design prototype is critical to making models 
of automobiles and aircraft that are accurate and reliable. The ability to experiment is 
key to making accurate models of complex systems but experimentation is not always 
possible. For complex sociotechnical engineering systems, it is not always possible to 
have controlled experiments that can make a brute force modeling strategy successful. 
It is also not possible in the case examined below, assessing a past engineering failure, 
to get exact access to the initial conditions of failure, much less to exactly recreate the 
hurricane and levee conditions that led to the initial failure.

13. We will not attempt to discuss the ontology and realism of models generally, 
as that is well-explored by many of the references we cite (Weisberg 2013; Winsberg 
2010). Levins does have one quote that well captures his views here: “A mathematical 
model is neither an hypothesis or a theory. Unlike the scientific hypothesis, a model is 
not verifiable directly by experience. For all models are both true and false. Almost any 
plausible proposed relation among aspects of nature is likely to be true in the sense that 
it occurs (although rarely and slightly). Yet all models leave out a lot and are in that 
sense false, incomplete, inadequate” (Levins 1966, 430).

14. For a related but distinct look at challenges in understanding algorithms 
based on engaging with their narratives, see Finn 2017.

15. Levins’s 1966 models I–III are not the focus of this paper, and will only 
briefly be mentioned. The goal of the models was to assess how species evolve in 
uncertain environments. Two of the models relied upon Levins’s fitness set modeling 
approach to project how evolution occurs, but they differed significantly in how fitness 
was calculated. The third model differed in that it had a genetic basis. If there was one 
common assumption among the three models, it was likely some general theory of 
evolution, that fitness shapes successive generations. Per endnote 9, it is not clear what 
a core “causal structure” would be, and his analysis focuses on agreement coming 
from substantially different models.

16. William Whewell wrote extensively on consilience in the 1800s; while the 
concept is not in broader use in the philosophy of science today, it is still discussed 
(Oreskes 2000; Laudan 1971; Wilson 1999). The literature on robustness does not 
generally reflect on consilience.

17. This tension in our argument was noted by Dan Hicks. We believe that the 
answer of which strategy is better for a given case will be context dependent, and is 
best assessed empirically. To do such an assessment of the value of a pluralistic versus 
monistic versus brute force strategy, there first needs to be more deliberate experimen-
tation in creating and using groups of models that are relevantly independent from one 
another. The caveats about modeling for policy in Sarewitz, Pielke, and Byerly (2000) 
and Oreskes, Shrader-Frechette, and Belitz (1994) likely do imply that simplicity can 
have major inherent advantages when dealing with complex, value-laden problems.
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18. There was no explicit debate in the report about using something akin to a 
‘brute force’ versus a ‘pluralistic’ modeling strategy. It was simply assumed that it 
was good practice to use multiple models, with the implicit claim that increased confi-
dence would arise from using the combination. In the sense of an ‘ad hoc’ or ‘implicit’ 
modeling strategy noted above, it seems like the geotechnical engineering field may be 
somewhere in between the two.

19. We thank Springer Press for permission to use part of this discussion of le-
vees, from Pirtle 2010. It has been heavily elaborated and modified here.

20. These and some of the other explicit details about the FEA/LEA/Centrifuge 
models comes from the IPET detailed technical appendices located in IPET 2007 Ap-
pendixes 4–6.

21. Wimsatt and others’ expansion of Levins’s framework does focus on getting 
increasingly independent forms of analysis, making the desire for more independence 
expand beyond focusing on numerical models. Baird’s argument that shows how phys-
ical models can carry knowledge also puts them on equal par with numerical models. 
Weisberg 2013 also discusses ‘concrete,’ physical models as being its own type of 
model category alongside mathematical and numerical models, which provides further 
context for treating the centrifuge model here as part of a Levins-like group of models 
that can support a shared claim.

22. Subsequent literature notes some disagreements with the IPET approach but 
often is confirming: Adhikari, Song, and Cheng 2014 came to different conclusions 
than the IPET on some of the soil strength and moduli but argues this did not “affect 
the failure mechanism of the levee substantially” (1123). The IPET 2009 discussion of 
Bea’s results are on V-125/6, which says “The UCB [Bea] Team hypothesized that a 
thin 1-in.-thick sensitive clay layer within the [marsh] peat layer (overlying the weak 
clay) is the location of the slip plane that caused the failure. The UCB Team based this 
on . . . soil samples and limited numerical analyses using a suspect geology profile and 
unrealistic soil properties. . . . IPET has not been able to detect a widespread thin (inch 
or less in thickness) layer within the peat layer, in spite of having physically harvested 
large volumes of peat for use in centrifuge testing and acquisition of significant ad-
ditional subsurface soils data.” If the weak soil had been higher, then it implies that it 
should have been more easily detected and reflects negligence. Bea’s team did agree 
with the IPET team about a type of gap being formed before failure.

23. How the models were built to reach this point would be a richer and more 
complex story. The LEA, FEA and centrifuge model concepts all existed before the 
Katrina failure, and in a key-sense the IPET’s model strategy was about the ‘usage’ of 
models and not the ‘building’ of models.

24. Efforts to combine or align the models could have been possible, such as 
by attempting to combine FEA and LEA modeling approaches (though it is not clear 
that such an approach is possible), or to more closely tie the FEA/LEA models to the 
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centrifuge. One could even imagine a brute force but hopeless model that attempts to 
simulate every atom at the 17th St. Canal during the failure, including both the ground 
and each successive wave of water. Such brute force approaches to any problem will 
suffer to due uncertainty in data, much less being able to meaningfully model intercon-
nections at an atomic level across a large scale.

25. If one is modeling a system that is complex and where a brute force modeling 
approach seems unlikely to work, then implementing a pluralistic modeling approach 
may be necessary in some contexts, and may be desirable in most. Paying close at-
tention to independence among models is vital to that approach. Considering these di-
mensions can allow one to better understand what the existing model-building strategy 
is in a field of engineering, and in turn to contrast the model strategy of that discipline 
to other fields. By clearly identifying and reflecting on what a field’s current model 
strategy is, one can be better prepared to reflect on what the model-building strategy 
should be.

26. Giere (1988, chap. 3) and Nelson Goodman (1970) make this point.
27. Statistical independence involves assessing whether two events have the 

same likelihood of occurrence—whether the occurrence of one entails a likelihood 
of the other happening. This concept has less applicability to modeling than does a 
related definition, where model independence can be defined based on whether two 
models are likely to give the same output based upon having the same input. See the 
discussion of Abramowitz and Gupta 2008 in Pirtle, Meyer, and Hamilton 2010. The 
definitions discussed below are more about the inputs and nature of the models than 
about an output-based comparison approach. Both are important, and the notions of 
independence discussed here can deepen a discussion of the independence of model 
outputs.

28. An indirectly related concept to independence is the concept of model tri-
angulation. Balaban, Hester, and Diallo (2015) discusses some of the history of tri-
angulation, including how the concept has been applied in debates about what meta-
methodologies are. Denzin (1970) discusses different types of triangulation such as 
triangulation across different datasets, across different people assessing an object, and 
triangulation across use of different methods. The physical and social categories of 
independence that we discuss later are similar and more nuanced than these categories, 
but the epistemic desiderata that we discuss are significantly different.

29. I am elaborating on these dimensions in Pirtle (In preparation), where addi-
tional description of these dimensions of independence can be found.

30. An eloquent description of three different levels of abstractions among mod-
els can be found in Gilbert 2008 (section 3.3): he refers to abstract models, which may 
not bear relations to real systems except in an abstract, theoretical way; ‘middle range’ 
models, which describe a phenomenon but in a way that it can be generally extended 
to multiple empirical systems; and facsimile models, which are meant to be a close 



Engineering Model Independence 223

reproduction of a real world system or phenomenon. The engineering systems scholar 
Michael Pennock has been studying the practice of multi-level modeling which uses 
models of different levels of abstraction to assess a given system, and hopes to assess 
best practices for combining results from multiple levels of a system (Pennock and 
Gaffney 2016).

31. Levins continues the above quote: “But this cannot be done. Therefore, sever-
al alternative strategies have developed.” Simply put, Levins claims that is impossible 
to have “models which maximize generality, realism and precision” (Levins 1966, 
422). Although Levins never used the phrase in ‘The Strategy,’ many authors refer to 
the following point as the ‘tradeoff hypothesis’ (Weisberg 2006a). In ‘The Strategy,’ 
Levins does not explicitly define realism, generality and precision, which led to criti-
cisms by Orzack and Sober (1993) that Levins does not explicitly justify the existence 
of tradeoff. The objections made in Orzack and Sober 1993 have been reviewed and 
mostly rejected in Levins 1993, Odenbaugh 2003, Odenbaugh 2006, Weisberg 2006a, 
and Weisberg 2006b. As Levins 1993 acknowledges that science often has an evolv-
ing and progressive state of the art that can make progress overtime, his claim about 
tension between epistemic desiderata is more about the experience of an individual 
modeler. Given limited time and effort, it can be difficult for a modeler to have a 
perfect model along each of these desiderata. Levins’s hypothesis would recommend 
picking one or two main epistemic goals at a time. This claim also applies generally to 
the topic of brute force modeling, as the challenges experienced there can change and 
ebb over time.

32. Per the hypothetical in note 24, even a model that tries to examine each atom 
of a system would have to make assumptions: does it show the space between the parts 
of the atom, and how does it deal with describing the location of each of those pieces? 
Adding in more details requires the use of more assumptions about how the details 
relate, which can require arbitrary, uncertain or false assumptions to incorporate them.

33. An anonymous reviewer asked about independence if the same modeler is 
creating two different models. Per the list in Table One, an individual modeler can 
definitely create models that are independent to one another in what their causal mech-
anisms are, how they represent the system, and in terms of how general, realistic and 
precise they are meant to be, etc. But, of course, those models are likely being strongly 
influenced by concepts that the individual might hold—their training, personal biases 
and other dimensions which may strongly influence the overall results. That influence 
and perception may also lead them to think there is more independence among the 
other dimensions listed above than there really are. For truly important problems, one 
wants to have multiple groups assess the problem, with consideration given to conflicts 
of interest and having diverse skillsets being used. On the other hand, it is possible 
for independent outside groups to assess a given system while having no meaningful 
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independence among the more ‘technical’ dimensions of the model. For this reason, 
discussions of independence should include both social and technical factors.

34. An intentional ‘strategy’ involves awareness of how models differ from one 
another, including how they variously reflect different model goals such as general-
ity, realism, precision and manageability. We contend that a mature strategy of model 
building should consider carefully the complexity of the system, the limits of data 
available, and have a proactive plan for assessing what types of models and modelers 
should be used, how different they should be, and how much they should differ on 
criteria such as precision and generality.

35. A reviewer asked what happens if there is a disagreement on whether more 
independence is needed amongst a group of models: one analyst might think more 
diverse viewpoints are needed to assess the problem, and another might view it as a 
straightforward problem that is sufficiently assessed with one model. This is a difficult 
point to answer: experts can disagree on any topic in modeling, and there is rarely a 
way to get an objective answer to a problem outside of continued peer review, em-
pirical research and discussion in the literature. By shifting the debate to the different 
dimensions of independence discussed above, it is possible that debate about whether 
more independence is needed can be clarified and there can be an easier way to get 
agreement among analysts, as well as to elicit input and explain the debate to other 
stakeholders such as elected or appointed decision-makers. However, it is possible that 
there simply may not be agreement on the need or lack-thereof for an independence-
focused strategy. This is not surprising, as we have already noted that an indepen-
dence-focused framework can be fallible. Eventually, if there is a pattern of failure or 
a lack of progress on assessing a given topic, analysts will have more perspective with 
which to assess the results and a more objective answer on whether independence is 
needed might be obtained.

36. In the parlance of Levins and other literature that follows him, this would say 
that ‘robustness’ benefits only accrue if the input models are at least partially indepen-
dent. As mentioned before, we have avoided the word ‘robustness’ in this paper be-
cause the word has deeply entrenched meanings in other fields (often tied to assessing 
system features that are ‘robust’ to parameter variation), which can cause confusion.
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