PDC Homepage

Home » Products » Purchase

The Leibniz Review

Volume 22, December 2012

Giovanni Merlo
Pages 9-36
DOI: 10.5840/leibniz2012222

Complexity, Existence and Infinite Analysis

According to Leibniz’s infinite-analysis account of contingency, any derivative truth is contingent if and only if it does not admit of a finite proof. Following a tradition that goes back at least as far as Bertrand Russell, several interpreters have been tempted to explain this biconditional in terms of two other principles: first, that a derivative truth is contingent if and only if it contains infinitely complex concepts and, second, that a derivative truth contains infinitely complex concepts if and only if it does not admit of a finite proof. A consequence of this interpretation is that Leibniz’s infinite-analysis account of contingency falls prey to Robert Adams’s Problem of Lucky Proof. I will argue that this interpretation is mistaken and that, once it is properly understood how the idea of an infinite proof fits into Leibniz’s circle of modal notions, the problem of lucky proof simply disappears.