Suppositional Attitudes and the Reliability of Heuristics for Assessing Conditionals

Joseph Salerno
Saint Louis University

Abstract: Timothy Williamson contends that our primary cognitive heuristic for prospectively assessing conditionals, i.e., the suppositional procedure, is provably inconsistent. Our diagnosis is that stipulations about the nature of suppositional rejection are the likely source of these results. We show that on at least one alternative, and quite natural, understanding of the suppositional attitudes, the inconsistency results are blocked. The upshot is an increase in the reliability of our suppositional heuristics across a wider range of contexts. One interesting consequence of the increased reliability is a proportional decrease in the plausibility of an error-theory that Williamson employs against widespread intuitions about the truth values of counterpossible conditionals.

Key words: conditionals, counterfactuals, counterpossibles, suppositional procedure, suppositional attitudes

At the heart of Timothy Williamson’s (2016, 2017, 2020) illuminating work on the semantics and epistemology of conditionals is a cognitive procedure that is hypothesized as humans’ primary heuristic for prospectively accessing conditionals. The so-called suppositional procedure is “fast and frugal”; it efficiently gets things right most of the time, but not always. In some interesting cases, we are said to rely on the heuristic all too closely—including, in some philosophical contexts, where we make faulty conditional appraisals that motivate unorthodox semantics. For instance, some counterfactuals with impossible antecedents, such as

“If blue whales were fish, they would not be very large fish”

and

“If you and I had the same parents, we would not be siblings”

have apparently false readings. Such intuitions figure in calls to revise orthodox semantics, since, according to orthodoxy, counterfactuals with metaphysically impossible antecedents are vacuously true.1 However, if our semantic intuitions in such cases are the result of applying a reliable, yet imperfect, heuristic that is faulty in precisely cases like these, then we have a compelling error-theoretic explanation of the intuitions, and a forceful objection to any corresponding recommendation to revise orthodoxy.

The centerpiece to Williamson’s discussion of the fallibility of the suppositional procedure is a set of arguments for its provable inconsistency. We focus exclusively on the non-probabilistic part of Williamson’s case for inconsistency, and argue that it is not the suppositional procedure per se that is to blame. It is Williamson’s theoretical model of the suppositional attitudes, which includes a specialized understanding of what it is to reject under supposition. The understanding is not em-
pirical neutral, but is nevertheless stipulated into the descriptive psychology. We propose a natural alternative model of the suppositional attitudes. On that understanding, we find a marked increase in the reliability of the suppositional procedure and a proportional decrease in the strength of the error-theory against counterpossible intuitions.

1. THE SUPPOSITIONAL PROCEDURE

Here is the schematic characterization of what we are said to do when we prospectively assess a counterfactual, \(\alpha \square \rightarrow \beta \):

First, we counterfactually suppose \(\alpha \). Then, if within the scope of the counterfactual supposition we accept \(\beta \), outside the scope of that supposition we accept \(\alpha \square \rightarrow \beta \). Similarly, if within the scope of the counterfactual supposition we reject \(\beta \), outside the scope of that supposition we reject \(\alpha \square \rightarrow \beta \). More generally, whatever assessment we make of \(\beta \) within the scope of the counterfactual supposition of \(\alpha \) we make of \(\alpha \square \rightarrow \beta \) outside the scope of that supposition; call that the suppositional procedure. (Williamson 2017, 215)

The procedure is said to be followed in the reverse direction as well. In sum:

The Suppositional Procedure (SP)

i. Accept the conditional \(\alpha \square \rightarrow \beta \), just in case you accept \(\beta \) under the supposition \(\alpha \).

ii. Reject the conditional \(\alpha \square \rightarrow \beta \), just in case you reject \(\beta \) under the supposition \(\alpha \).

iii. Quite generally, take an attitude unconditionally toward \(\alpha \square \rightarrow \beta \), just in case you take that attitude toward \(\beta \) under the supposition \(\alpha \).

We focus exclusively on attitudes of outright acceptance and outright rejection (under supposition). Thus, we will not be concerned with clause iii, except to be mindful of the purported generality of the heuristic. SP is said to apply *mutatis mutandis* to the assessment of indicative conditionals. The difference between the two kinds of conditionals, as well as their corresponding brands of supposition, should not effect the central points of our discussion. The cognitive attitudes in question operate on interpreted sentences, rather than on propositions directly, since “fine-grained dynamics can only be properly understood at a level where sentential structure has not been left behind” (Williamson 2020, 24). Thus, schematic letters, \(a, \beta, \ldots \), and sentences letters, \(A, B, \ldots \), should be read accordingly.

The remainder of section 1 explores the principles and resources needed to follow the main arguments appearing section 2.

1.1. Acceptance under Supposition

A central component of the suppositional procedure is the cognitive development that ends in an acceptance under supposition. You begin in the imagination with a supposition.

Then, on that supposition, develop its consequences by whatever appropriate means you have available: constrained imagination, background knowledge, deduction. . . . If the development leads to accepting \(C \), conditionally on the supposition \(A \), then accept the conditional ‘If \(A \), \(C \)’ unconditionally, from outside the supposition. If instead the development leads to rejecting \(C \) conditionally on the supposition \(A \), then reject ‘If \(A \), \(C \)’ unconditionally, from outside the supposition. (Williamson 2020, 18)

Some brand of arriving at, being led to, or inferring information, via the imaginative exercise, appears to be sufficient for “acceptance under supposition.” The development may be inductive, abductive, deductive, or involve other cognitive processes and mechanisms, or various combinations, consciously or unconsciously. It is not enough to be merely causally led to \(C \). A stream of consciousness, merely wishful, daydream that begins with my supposing “I enter the race” and
Suppositional Attitudes and the Reliability of Heuristics for Assessing Conditionals

ends with “I win the race” is not accepting “I win” on the supposition “I enter.” And neither is bumping my head and thereby randomly believing “I win” in the midst of a suppositional exercise about my entering the race. Any notion of suppositional acceptance that figures centrally in an epistemology of conditionals most certainly involves C being epistemically connected, or taken to be epistemically connected, in the relevant way to the supposition A. We return to the point later. For now note, quite simply, that arrival is sufficient for suppositional acceptance, or at least the right kind of “arrival” is sufficient on this picture:

The Acceptance Thesis
C is accepted under a supposition A, when one infers (not necessarily deductively), or is imaginatively led in the right sort of way to, C from A (plus corresponding background).

As a special instance, suppositions are always accepted:

The Suppositional Triviality Thesis (STT)
On the supposition that A, A is accepted.

After all, on any natural understanding of “leading to” or “arriving at” information given by A, a supposition A immediately leads to, or has one arrive at, A. Williamson endorses STT on his way to drawing a corresponding lesson for SP:

An immediate upshot of the Suppositional Procedure is that conditionals of the form ‘If A, A’ are accepted, for trivially one accepts A on the supposition A. (2020, 18)

Call that thesis Conditional Triviality:

The Conditional Triviality Thesis (CTT)
“If A, A” is accepted, unconditionally.

CTT rests on SP and STT, while it should be clear that STT rests ultimately on the Acceptance Thesis, or something very much like it.

Williamson embraces a principle regarding the logic of acceptance of conditionals—viz., “conjoining conditionals with the same antecedent is equivalent to conjoining their consequents” (2020, 46). He calls this CCCC. For our purposes, we need only the one direction:

CCC
If one accepts the conditional, “If A, B & C,” then one accepts the conjunction, “If A, B and if A, C.”

The principle is harmless enough, so long as the imaginative exercise is not about a hypothetical for which development via conjunction-elimination is inappropriate. A preference for the generality of CCCC and its converse, however, foreshadows a willingness to stipulate into our psychology fewer cognitive differences that may make a difference (by suggesting, for example, that we do not conjoin conditionals with the same antecedent without conjoining their consequents).

1.2. Rejection under Supposition

Williamson (2020, 45) defines “rejection under a supposition” in terms of acceptance and negation, by equating the rejection of C under a supposition with the acceptance of ¬C under that supposition. The definition should give us pause, since the suppositional procedure is said to operate on interpreted sentences. Plausibly, “suppositional acceptance of interpreted sentence ¬C” is not the same cognitive state as “rejection of interpreted sentence C (on that same supposition).” These attitudes operate on distinct syntactic structures, hence, have elements not in common. The worry is not merely terminological, contrary to what Williamson suggests (45). We grant that one may stipulate a derivative attitude of rejection as one wishes. But whether that stipulated attitude, rather
than some other brand of rejection (unmediated by sentential negation in the content of the attitude), figures in SP is a substantive empirical question—one that, as we shall see, makes a significant difference to the reliability of SP.

We formulate the metaphysical thesis about the nature of suppositional rejection as follows:

Rejection Thesis
Necessarily, C is rejected under a supposition A just in case ¬C is accepted under A.

The thesis is weaker than Williamson’s definition of rejection. As stated, it presuppose a necessary correlation, but not an identity, between suppositional rejection and suppositional acceptance of negation. Still weaker would be a commitment to the existence of a generally reliable heuristic that we typically, but not always, follow:

The Rejection Heuristic
Under a supposition A, reject C just in case you accept ¬C.

We will see that our main concerns arise even on these weaker understandings of suppositional rejection.

Williamson stipulates at least one other thesis about negative assessment. He contends that a blatant contradiction is rejected, within the scope a supposition. When faced with the derivation of an explicit contradiction from a supposition for reductio, for instance, “still within the scope of the counterfactual supposition, we reject that as absurd” (2017, 216). Call this the Unacceptability Thesis:

Unacceptability Thesis
We reject A & ¬A under any supposition.

One might defend Unacceptability by noting that, a., on the current view, rejection of a contradiction is equivalent to acceptance of a tautology, and, b., it is standard to accept classical tautologies under suppositions in classical reductio arguments. However, in some cases, classical tautologies may not even be inferable—at least not by appropriate means, since the suppositional development may be a non-classical exercise—as it would be, for example, if the supposition were about the correctness of some non-classical logic.

We will return to Unacceptability. For now, let it be registered that it, and any heuristic that it is meant to reflect, is peripheral to our everyday use of heuristics for suppositional thinking. Notice as well that Unacceptability and the Rejection Thesis, like CCCC, stipulate a less fine-grained suppositional psychology than we might prefer. For those idealizations rule out agnosticism regarding some tautologies, or acceptance of ¬C without rejection of C, respectively (under supposition).

One final commitment is Williamson’s treatment of (unconditional) acceptance and rejection as contraries (clause i below). We may ask about the appropriateness of an analogous treatment of the corresponding suppositional attitudes (clause ii below):

Contrariety Theses
i. It is inconsistent to both accept and reject α, unconditionally.
ii. It is inconsistent to both accept and reject α, under the same supposition.

Whether one ultimately accepts clause ii will depend importantly on the nature of suppositional rejection. Suppositional rejection unmediated by acceptance and sentential negation (in the content of the attitude) lends better to a contrariety thesis than a treatment that defines it as a species of acceptance triggered by an “arrival” heuristic. After all, having both yay and nay attitudes toward the very same sentence (under a supposition) should be more of a rational shortcoming than arriving (e.g., inferentially) at both C and ¬C (under a supposition). The latter, in some cases, is not a rational shortcoming at all.
Williamson (2020, 26–27) endorses the analogy with belief updating. On that analogy, suppositions are just like the addition of new beliefs, suppositional development is just like an update on new belief, and the suppositional attitudes themselves are “offline” versions of the very attitudes that we have unconditionally. Not everything carries across the analogy. But if normative relations between (unconditional) attitudes carry across to their offline counterparts, we will want to posit contrariety of the suppositional attitudes (clause ii) as well as of the unconditional attitudes (clause i).

We utilize all of the above principles in what is to come.

2. ARGUMENTS FOR THE INCONSISTENCY OF SP

The simplest argument (on Williamson's resources) for the provable inconsistency of the suppositional procedure for counterfactuals may be developed as follows:

By CTT, one accepts the counterfactual, “If $A \& \neg A$, then it would be that $A \& \neg A$.” However, by the Unacceptability Thesis, “$A \& \neg A$” is rejected under any hypothetical supposition, so it is rejected under the supposition “$A \& \neg A$.” Following SP (clause ii), one rejects the counterfactual, “If $A \& \neg A$, then it would be that $A \& \neg A$.” SP thereby directs us to both accept and reject the same counterfactual. However, this is inconsistent, by Contrariety (clause i).

A Williamsonian warning: Since the suppositional procedure is provably inconsistent, we should not rely on it too closely—especially not in cases where the antecedent is impossible. After all, we just witnessed that the procedure goes off the rails in precisely those kinds of cases.

Notice however that the suppositional procedure is not responsible for the inconsistency, if suppositional acceptance and rejection are contraries. For in that case, the inconsistency is derivable without SP:

STT says we accept “$A \& \neg A$” under the supposition “$A \& \neg A$.” The Unacceptability Thesis tells us that “$A \& \neg A$” is rejected under any supposition, including under the supposition of “$A \& \neg A$.” But then we both accept and reject “$A \& \neg A$” under the same supposition. By Contrariety (clause ii), this is inconsistent.

Even if one denies the full strength of Contrariety (clause ii) and its normative implications, they may still affirm that there are generally reliable contrariety heuristics that are respected in everyday (non-counterlogical) circumstances:

Contrariety Heuristics

a. Accept C under a supposition A, only if you do not reject C under A, and
b. Reject C under a supposition A, only if you do not accept C under A.

Conjoining these with Williamson's resources is sufficient to see that otherwise reliable suppositional heuristics (without SP) sometimes mandate the impossible—viz., to both reject “$A \& \neg A$” under the supposition “$A \& \neg A$” (via Unacceptability) and not reject “$A \& \neg A$” under that same supposition (via STT and the Contrariety Heuristic, clause a). In sum, without SP, otherwise reliable suppositional thinking is faulty in counterlogical contexts, if we accept Williamson's Unacceptability Thesis.

Conversely, if Unacceptability does not correspond to how humans generally think suppositionally (essentially, accepting classical theorems under suppositions), then it is not obvious that human's primary set of supposition-related heuristics (with or without SP) is inconsistent. Outside of formal mathematical contexts, Unacceptability appears to be the least entrenched of the reliable resources on the table. I am inclined to blame it for the above inconsistency results. However, there is another inconsistency result that does not utilize the Unacceptability Thesis.
Williamson’s main argument (2020, 53–54) for the inconsistency of the suppositional procedure, for conditionals generally, may be paraphrased as follows:

By CTT, “If $A \land \neg A$, $A \land \neg A$” is accepted. Via CCC, it follows that one accepts “If $A \land \neg A$, A” and accepts “If $A \land \neg A$, $\neg A$.” The latter conjunct, by SP (clause i), implies that one accepts “$\neg A$,” on the supposition “$A \land \neg A$,” which by the Rejection Thesis implies that one rejects “A,” on the supposition “$A \land \neg A$.” Thus, by SP (clause ii), one rejects the conditional, “If $A \land \neg A$, A.” Therefore, one both accepts and rejects that conditional, which by Contrariety (clause i) is inconsistent.

Again, the suppositional procedure is not the trouble-maker, if the basic suppositional attitudes are contraries (or, if the Contrariety Heuristic is generally respected):

By STT, one accepts “$A \land \neg A$” on the supposition “$A \land \neg A$.” Analogous to CCC: one accepts a conjunct (on a supposition), if one accepts the conjunction (on that supposition). So, one accepts “A” on the supposition “$A \land \neg A$.” By that same reasoning, one accepts “$\neg A$” on the supposition “$A \land \neg A$,” which by the Rejection Thesis implies the rejection of “A” on the supposition “$A \land \neg A$.” By the Contrariety Heuristic (clause b), we do not accept “A” on that supposition. In sum, we both accept and do not accept “A” under the same supposition, which is impossible.

Therefore, a basic set of otherwise reliable heuristics, not including SP, is predicted to fail in counterlogical contexts.

Where does that leave us? One option is to embrace the inconsistency results and admit that suppositional thinking (even without SP) is faulty when antecedents are impossible. We prefer an option that predicts less unreliability in our thinking, if we can find one. A second option is to deny all the Contrariety resources related to suppositional thinking. This includes denying that we employ a Contrariety Heuristic (despite its general reliability). The third option is to deny the Rejection Thesis and that we employ a corresponding Rejection Heuristic (despite its general reliability).

There is independent empirical reason to chose the third option and deny RT—viz., people deny “insignificant-link” conditionals. This data, we will see, is incompatible with joint employment of RT and SP.

The important study is Douvan 2018, where it is argued that strength of inferential connection between antecedent and consequent is a reliable predictor of how people evaluate conditionals. When the connection is strong (weak) people assess conditional as true (false). An insignificant-link conditional is an indicative conditional for which the connection is weak: the antecedent does not make a very big epistemic difference in either direction for the consequent. The interesting cases are ones where the antecedent and consequent are nevertheless related topically and epistemically. Berto (2020, 8) gives an example in which, for very good independent reason, he is confident (although not certain) that Finland will not win the World Cup. He then prospectively considers the following conditional:

(FINLAND) If Finland plays Uruguay in the next match, then it won’t win the World Cup.

The supposition of the antecedent does not significantly move his attitude regarding the consequent. So, on the supposition of the antecedent, he (still) accepts the consequent. Yet, he rejects the conditional, as the Douvan data predicts.

Here is the empirical argument against RT.

Suppose the Douvan data is correct: we deny insignificant-link conditionals “If A, C.” Then, by SP (clause ii), we reject C on the supposition A. It follows by RT that we accept $\neg C$ on A. But then, by SP in the other direction, we accept “If A, $\neg C$.” But we do
not accept that conditional, since “If $A, \neg C$” is an insignificant-link conditional just in case “If A, C” is. Contradiction!

Williamson has to either deny the robustness of the Douvan data, or that we employ SP in such cases, or admit that our suppositional thinking is even more unreliable than he originally suggested. From where we stand, the lesson is that either RT is not a good theory of suppositional rejection or SP is not our primary heuristic for prospective assessment.\(^4\)

The lesson to draw at this stage is then this: if the Douvan data is robust and we really do reject insignificant-link conditionals, and SP is reliable in such contexts, then RT is not an empirically adequate theory of suppositional rejection. We attempt a better theory in the next section.

3. AN ALTERNATIVE APPROACH TO SUPPOSITIONAL ATTITUDES

A natural suggestion is that acceptance of C under a supposition A coincides with acceptance that A leads to C. For instance, we might equate acceptance of proper development with suppositional acceptance by definition, or treat it as a norm of suppositional acceptance, or work it into a purely descriptive account of when we tend to accept under supposition (for purposes of conditional assessment). We explore the first option—the definitional version:

Acceptance Definition: To accept C under a supposition A just is to accept that A provides appropriate kind and degree of epistemic support for C (e.g., to accept the inferability of C from A).

Rejection Definition: To reject C under a supposition A just is to reject that A provides appropriate kind and degree of epistemic support for C (e.g., to reject the inferability of C from A).

General Definition: Generally, to take an attitude toward C under A just is to take that attitude toward whether A provides appropriate kind and degree of epistemic support for C (e.g., to take that attitude toward the inferability of C from A).

On this theory, suppositional acceptance and rejection are obviously contraries, since mutually exclusive.

Notice our theory invalidates the Unacceptability Thesis. $A \& \neg A$ is sometimes inferable by appropriate means from a supposition. When this is realized, then by definition it is suppositionally accepted and not rejected.

Our proposal also invalidates the Rejection Thesis. One may suppositionally reject without suppositionally accepting the negation, since one may reject the inferability of both C and $\neg C$. Normally, acceptance of $\neg C$ under a supposition will lead to rejection of C under the same supposition. But that is because, normally, via appropriate means, the inferability of $\neg C$ precludes the inferability of C. When such preclusion is realized (while also accepting $\neg C$ under A), one thereby rejects C under A, by definition. But, again, such preclusion is not always realized or realizable.

By contrast, in some cases, C and $\neg C$ are both inferable via appropriate means from A (e.g., when A is a supposition for classical *reductio*). When this is realized, by definition, one accepts C and accepts $\neg C$ under A, without rejecting either. In that case, SP instructs us to accept both “If A, C” and “If $A, \neg C$,” and to reject neither, as we should (and often do) in the context of expressing the results of a classical *reductio* in conditional terms. The interesting consequence then of our model of suppositional thinking is that the suppositional procedure is quite reliable, and not prone to error, in counterlogical contexts. Thus, we also lose Williamson’s independent reason to be concerned about SP’s application in countermetaphysical contexts that are not counterlogical.
Empirical data helps to adjudicate our debate between conflicting models. For instance, given the Rejection Thesis and SP, it follows that the acceptance of “If A, ¬C” is equivalent to the rejection of “If A, C” (Williamson, 2020, 46). That suggests these attitudes stand or fall together in the wild, even in cases where our working theory predicts a difference. We saw our working theory predicts a difference in a couple different cases. The first is the case of counterlogical contexts, where we do not accept “If A, ¬C” and reject “If A, C.” Instead we accept both, which is the natural thing to do in light of *reductio* subproofs to ¬C and to C. If that reporting of the data is accurate, it speaks against the equivalence, and in favor of our account, which, as we already noted, makes this very prediction.

Williamson would object, because he thinks that clearer minds prevail and *contravene* the suppositional procedure in counterlogical contexts (2017, 216). That might explain why those (purportedly equivalent) attitudes do not stand together in the aforementioned case. The problem with that hypothesis is that, if we contravene SP in counterlogical contexts, then we do not have a neat explanation for the other part of the counterlogical data—namely, that we do accept both conditionals, “If A, C” and “If A, ¬C.” The neat explanation is that we accept those two conditionals via SP because we recognize that the *reductio* supposition supports C and supports ¬C.

The second case where our theory predicts a difference between the purportedly equivalent attitudes involves insignificant-link conditionals, like FINLAND. The data there was that we reject both “If A, C” and “If A, ¬C,” and accept neither. If that reporting of the data is accurate, it speaks against Williamson’s equivalence. Our view fairs better. A does not make a significant epistemic difference in either direction regarding our attitude toward C. Thus, we predict suppositional rejection of C and suppositional rejection of ¬C on A, hence, via SP, rejection of both “If A, C” and “If A, ¬C,” and acceptance of neither.5

In conclusion, we explored Williamson’s theoretical model of suppositional thinking and its connection to the assessment of conditionals. On that view, a primary heuristic is faulty in counterlogical contexts. Williamson’s model however involves a number of idealizations about suppositional rejection as it figures in conditional assessments—idealizations that are not favorable toward a treatment of suppositional acceptance and rejection as contraries. We hypothesize an alternative model that is favorable toward that treatment. It defines suppositional rejection as an attitude in its own right—unmediated by suppositional acceptance and negation in the content. A benefit there is a more fine-grained palette of potential attributions. Moreover, on our approach, the suppositional attitudes themselves are treated as no more mysterious than unconditional attitudes—they just are those attitudes, although taken toward relations of epistemic supportability. The approach has the added benefit of straightforwardly explaining data about insignificant-link conditionals. Additionally, if we are right, the suppositional procedure itself, and our suppositional thinking generally, appears to be consistent in counterlogical contexts. We thus find a marked increase in the reliability of our suppositional thinking, and a proportional decrease in the strength of the error-theory Williamson directs against widespread intuitions about the truth values of counterpossible conditionals.

NOTES

Thanks to Isabella Cissell, Allan Hazlett, Matt McGrath, members of the Washington University of Saint Louis Epistemology Group, and anonymous referees for this journal, for feedback that improved the paper significantly.

2. This formulation brings together resources from Williamson 2017, 216 and Williamson 2020, 53–54.

3. See also Berto 2020 for fruitful discussion.

4. Berto 2020 ultimately denies that SP is our primary heuristic for prospective assessment. After all, as he presents it, FINLAND is a blatant counterexample to SP: He accepts the consequent on the supposition of the ante-
cedent, and yet, rejects the corresponding conditional. The strength of that position, however, depends on how we clarify the nature and norm of suppositional acceptance. We mentioned (with the head-bumping example) that merely accepting C while in the imaginative act of supposing is not sufficient for the kind of suppositional acceptance that figures in the assessment of conditionals. The right sort of epistemic connection is needed. In section 3 we will see that Berto’s example does not count as a case of suppositional acceptance in the relevant sense, precisely because the right sort of epistemic connection is missing. See note 5 below.

5. Berto might caution that the case is supposed to be one where the thinker does accept the consequent suppositionally. After all, he accepts it unconditionally, and the supposition does not significantly effect that attitude. For us, such a consequent is not accepted “suppositionally,” because the supposition is not recognized as providing enough support. Berto (2020, 10) prefers a related epistemic restriction on the application of SP itself. For him SP (clause i) should be employed, only if the supposition, in some sense, “makes a relevant difference for the truth or likelihood of C.” However, that would only explain why we do not accept those conditionals via SP. It would not explain why we reject them.

REFERENCES

