Displaying: 21-30 of 1625 documents

0.05 sec

21. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Jesús María Goñi Zabala Logika euskeraz
22. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Mario Bunge ¿Qué es un individuo concreto?
abstract | view |  rights & permissions
The paper investigates the problems whether a concrete individual can be defined as a set or be characterized by an abstract theory. In particular, Jesês Mosterín’s objection to a theory of things proposed by the present author is discussed. Also, the view of scientific theories held by Sneed, and adopted by Mosterln, is analyzed. It is concluded that any adequate description of a concrete individual calls for more than a mathematical formalism.
23. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Indice por Autores de Theoria-Primera Epoca (1952 1956)
24. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Jesús María Goñi Zabala Lógica en euskera
25. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Centre de Recerca Mate matica (Institut d’Estudis Catalans)
26. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Mary Sol de Mora III Congreso de la Sociedad Española de Historia de la Ciencia
27. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Javier de Lorenzo Pascal y los indivisibles
abstract | view |  rights & permissions
The pascalian use of indivisibles is here considered in the context of the theological and mathematical debates of the time, by distinguishing it clearly from this of Cavalieri. The combinatory and geometrical approaches are closely linked in Pascal’s work. His use of indivisibles has a heuristic, inventive character and not only a demonstrative one. Ontologically speaking, it stems out from the acceptance of actual infinite. The use of the symmetry axiom of Archimedes is the basis of the pascalian use of the infinitesimals, which has, in other respects, some close connexions with the Leibnizian conception of infinitesimals.
28. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Juan José Olives Structural Functions of Harmony
29. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Eloy Rada Teorías y significado
abstract | view |  rights & permissions
The purpose of this paper is to outline a thesis which in some ways attemts to retrieve the value of meaning as a constituent element of theories. It will be argued that theories possess in common a more or less explicit relational structure, but, at the same time, they possess a meaningful function by means of which they are instruments of knowledge or, rather, by means of which theories have the value ofknowledge in science. In conclusion, it will be suggested that this approach to theories allows those with weak relational structure (social, historical theories, etc.) to be treated with a degree of adequacy by the philosophy of science. Likewise, it will be suggested that the method of semantic analysis linked to the theory of “possible worlds” could be fruitful for this purpose.
30. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
James Gasse Sémiologie du raisonnement