Displaying: 21-37 of 37 documents

0.299 sec

21. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 3 > Issue: 1/2/3
François Paychere Sémiotique et Droit: Exercice de lecture
abstract | view |  rights & permissions
Language and judicial activities are both signs of the existence of a society. There is, therefore, good reason for a dialogue between the science of language and the science of law. This article applies a linguistic theory of the Paris School (semiotics) to the examination of a legal text, namely a contract. The author points to some eIements shared by legal and other texts, and demonstrates how a semiotic interpretation can provide interesting and unexpected insights into the deeper levels of a legal text. He concludes that a similar approach could fruitfully be used with other types of legal text.
22. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 3 > Issue: 1/2/3
Hélène Bauer-Bernit Droit, langues et représentation des connaissances
abstract | view |  rights & permissions
The connection between law, language and knowledge representation is evoked in its theoretical framework, in the light of recent developments in linguistics, philosophy, theory of law and congnitivescience on wich artificial intelligence is based. The conditions and limitations of the modelisation of law are examined. Conclusions are draw concerning the feasibility; usefulness and limitations of “trans-frontier” expert-systems.
23. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 3 > Issue: 1/2/3
Georges Kalinowski Sur l’analogie entre le déontique et l’aléthique: Logique des normes, logique déontique et leur analogie avec la logique modale alethique
abstract | view |  rights & permissions
Since Leibniz, the logic of norms is founded on the analogy between the deontic and the alethic. Nevertheless, von Wright, creator of the deontic logic -firstly logic of norms, afterwards logic of normative statements-, holds this analogy responsible for the misadventures of the deontic logic. Now it is not responsible, but only limited so that the miscarriages in question are imputable solely to the overstepping of its limits.
24. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 4 > Issue: 1
2e Ecole d’Eté de l’Association pour la Recherche Cognitive (Château de Bonas, Francia, 2-12 de Julio de 1989
25. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 4 > Issue: 1
Premier Colloque Européen d’ELLIA (Europa Lex Logica Informatio Automatica) sur “Droit-Décision-Informatique” (Bruselas, Mayo de 1990)
26. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 4 > Issue: 1
Jean-Louis Gardies La définition de I’identite d’Aristote à Zermelo
abstract | view |  rights & permissions
This paper sketches a history of definition of identity from the Aristotle’s Topics down to the modern set theory. The author tries to explain particularly: first, how the transformation of the concept of predicate at the end of the nineteenth century made it necessary to revise the leibnitian definition of the identity of individuals; secondly, why Dedekind, Peano, Schröder, etc. made, between two possible definitions of identity of predicates or of sets, a choice which later made it necessary to postulate in set theory the axiom of extensionality.
27. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 4 > Issue: 2
Miguel Sánchez-Mazas Une méthode arithmétique de décision pour le système modal S5 par des invariants numériques de ses classes d’équivalence
abstract | view |  rights & permissions
Il s’agit d’une methode qui permet d’associer à chaque formule bien formée du système S5 de logique modale un nombre naturel invariant pour toutes les formules qui appartiennent a la même classe d’equivalence que la première.En particulier, étant donné que la méthode associe à toutes les tautologies du système le nombre o et a toutes les contradictions du système un certain nombre Φ, il suffit de calculer le nombre qui, en vertu des associations fondamentales, reste associé à n’importe quelle formule pour décider si cette dernière est tautologique, contradictoire ou contingente.Les relations logiques reliant deux formules du systeme -par exemple, des implications, des incompatibilités, des oppositions contradictaires, etc.- sont révéciés par un simpIe examen oculaire des nombres assoc iés aux formules données et une rapide vérification manuelle ou informatique fondée sur la comparaison des chiffres du même rang de ces nombres, écrits en hexadécimal.Finalement, l’analyse de la composition binaire du nombre associé a une formule donnée permet d’obtenir l’expression de la première sous sa forme normale conjonctive.La méthode décrite constitue donc une nouvelle méthode arithmétique de décision pour le système modal indiqué.
28. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 5 > Issue: 1/2
Miguel Espinoza Critique de la science anti-substantialiste
abstract | view |  rights & permissions
A negative conclusion, like R. Feynman’s sentence “nature is uncomprehensible”, forces us to examine the value of contemporary science from the point of view of understanding. As a contribution to this task, I criticize some of the philosophical presuppositions of experimentalism. Then I try to place some stepping stones towards metaphysics, conceived as a rational extension of science, and devoted to the search for intelligibility.
29. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 5 > Issue: 1/2
Lorenzo Peña XXIII Congrès de l’Association des Sociétés de Philosophie de Langue Française (Hammamet, 1-5 de septiembre de 1990)
30. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Lorenzo Peña De la logique combinatoire des ‘Generales Inquisitiones’ aux calculs combinatoires contemporains
abstract | view |  rights & permissions
In his 1686 essay GI Leibniz undertook to reduce sentences to noun-phrases, truth to being. Such a reduction arose from his equating proof with conceptual analysis. Within limits Leibniz’s logical calculus provides a reasonable way of surmounting the dichotomy, thus allowing a reduction of hypothetical to categorical statements. However it yields the disastrous result that, whenever A is possible and so is B, there can be an entity being both A and B. Yet, Leibniz was in the GI the forerunner of 20th century combinatory logic, which (successfully!) practices - sometimes for reasons not entirely unlike Leibniz’s own grounds - reductions of the same kinds he tried to carry out.
31. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Miguel Sánchez-Mazas Actualisation, développement et perfectionnement des calculs logiques arithmético-intensionnels de Leibniz
abstract | view |  rights & permissions
In the parts I and II of this paper, the Author shows:1. how Leibniz’s arithmetico-intensional logical calculi of April 1679 can be completed and transformed in an intensional Boolean algebra (U, v, &:, -, e, -e) admitting, on the one hand, two different logical interpretations:li1: as a complete and consistent calculus of terms (properties) and syllogistic;li2: as a deontic first-order calculus and, on the other hand, two different arithmetical interpretations:ai1: as a numerical Boolean algebra (DM, lcm, ged, M/..., 1, M) of all divisors of a natural number M;ai2: as a numerlcal Boolean algebra (BA, lcbc, gcbc, A-..., 0, A) of all binary components of a natural number A.Arithmetical representations of negation of a term x and of combination (intensional conjunction) and alternative (intensional disjunction) of two or more terms are respectively M/x, lcm (lower common multiple) and gcd (greatest common divisor) in the first Boolean algebra (ai1) and A-x, lcbc (lower common binary composite) and gcbc (greatest common binary component) in the second one (ai2).2. that, in this context, each possible world U of 2ⁿ elements (terms, acts) can be defined on the basis on n elements of U choosen as “saturated” (intensionally maximal, but possible) in U or, inversely, on the basis of n elements of U choosen as “primitive” (intensionally minimal, but not-universal) in U. In fact, each possible element of U can be defined now as an alternative of saturated elements of U, now as a combination of primitive (opposite to saturated) elements of U; all combinations of saturated elements of U being equivalent to the impossible element (-e, non-entity, resp. impossible act) of U and an alternatives of elements of U being equivalent to the universal element (e, entity, resp. possible act) of U.In the arithmetical representation of each possible world U, the maximal number M (for ai1) or A (for ai2) represents the impossible (non existent) element of U. Now, each possihle world defined by n saturated (resp. primitive) elements can be automatically enlarged (restricted) by the introduction (suppression) of m new (old) saturated (resp. primitive) elements, producing a new possible world U’ where m impossible elements (centaur, pegasus, syren, unicorn, etc.) of U become possible elements of U’ or inversely.After this first type of arithmetical representation of logical calculi, where the terms are -as in Leibniz’s 1679 calculi- represented by natural numbers and the propositions by equations (for universal resp. prescriptive) or inequations (for particular, resp. permissive), in the part III the Author presents a second type of arithmetical representation where propositions are represented by natural numbers and the valid (classical or deontic) syllogisms by true arithmetical relations between the numbers of premisses and the number of conclusion. Here the entire syllogistic adopts the form of a multiplication table wherea syllogism is valid if and only if the lcm (in ai1 ) or the lcbc (in ai2) of the characterlstic numbers of the premisses is a multiple (in ai1) or a binary composite (in ai2) of the characteristic number of the conclusion.
32. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Cinquiéme Colloque de I’ARC: ‘Percevoir, Raisonner, Agir (Articulation des modèles cognitifs)’ (Nancy, 24-26 Mars 1992)
33. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Bicentenaire de Lavoisier (Paris, 3-6 Mai 1994)
34. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 8 > Issue: 1
Jean Dhombres La Figure dans le Discours Géométrique: Les Façonnages d’un Style
35. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 9 > Issue: 1
Charffedine Boughdiri Le devenir du ‘Cogito’: Application d’une herméneutique poïetique
36. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 9 > Issue: 2
Michel Serfati Regulae et Mathématiques
abstract | view |  rights & permissions
L’histoire du texte des Régles pour la Direction de l’Esprit (Regulae) de Descartes est un peu singulière: non publié du vivant de Descartes, il n’a paru qu’en 1701, dans les Opera Posthuma d’Amsterdam. De façon plus significative, et contrairement aux autres traités cartésiens perdus, ce texte secret n’est jamais explicitement evoqué par Descartes, fût-ce au détour d’une correspondance. Par leur étroite dépendance vis à vis des mathématiques, les Regulae sont cependant un texte majeur, constitutives de la pensée de leur auteur dans ses années de jeunesse (1619-1628), et par là de toute la philosophie moderne. Descartes avait jugé le texte suffisamment important pour I’emmener à Stockholm, où il a été découvert apres sa mort, dans ses papiers.Entre les mathématiques et les Regulae, ce texte “éclatant et obscur” (J.P. Weber), il est ces trois types principaux de rapports croisés que nous tâcherons d’analyser: historiquement d’abord, quelles furent la formation et I’expérience mathématique du jeune Descartes, qui constituerent, à notre sens, I’armature conceptuelle du texte. Quelles sont ensuite les voies par lesquelles, dans les Regulae, Descartes a putransmuer cette expérience mathématique premiere à la fois en une pratique, une méthode, une théorie de la connaissance, enfin en une épistémologie assez radicalement neuve. Enfin, et prenant Descartes au sérieux nous examinerons à I’occasion cette question: quel est le sort réservé, de nos jours, à cette épistémologie cartésienne, en particulier confrontée aux mathématiques contemporaines?
37. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 9 > Issue: 2
Miguel Espinoza Apologie du logos