Displaying: 1-10 of 1178 documents

0.051 sec

1. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Juan David García Bacca Tres ejercicios de Lógica: I. Potenciaciones de la negación
2. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Ernesto García Camarero Bases de datos y representación del conocimiento
abstract | view |  rights & permissions
The computer has three fundamental analogies with the human being (senses, memory and intelligence), but the coming out of the data bases announced a new form of language: the computer language. The data bases not only set several new technical and social problems, but moreover are modifying the traditional form of social memory, supported by paper, by changing it in a memory based on electronic means. This situation creates new forms of representation of knowledge to which the author gave attention in previous contributions with his SENECA project, in which computer language tries to give a synthesis of oral and written languages, with their respective advantages.
3. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
El Centro de Analisis, Logica e Informatica Juridica
4. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Leibniz: Questions de Logique (Bruselas y Lovaina)
5. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Primer Congreso Latinoamericano de Historia de las Ciencias y la Tecnologia (La Habana)
6. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
José Hierro Pescador Mundos imposibles
abstract | view |  rights & permissions
An impossible world is a world which necessarily does not exist. Besides the paradigm of necessity, wich is logical necesslty, we must consider physical necessity and ethical necessity, both of wich can beexpressed in terms of logical necessity, in the way suggested by Montague. Accordingly, an impossible world can be logically impossible, physically impossible or ethically impossible, but in every case the impossibility can be reduced to logical impossibility, and in consequence an impossible world is irrational and cannot be understood by us. An illustration is taken from the incongruities of Kafka’s story in Di Verwandlung.
7. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Lorenzo Peña Agregados, sistemas y euerpos: un enfoque difuso-conjuntual
abstract | view |  rights & permissions
A Fuzzy-Set Theoretical Framework -resting on a paraconsistent infinite-valued logic- is sketched, wherein a thorough ontological-reduction program can be carried out. The framework includes formulae of the form “x comprises z in the time-interval e”. Reducing aggregates to sets thus handled is shown to escape usual objections. Likewise, systems generally can be regarded as aggregates, hence as (fuzzy) sets -the purported nonextensionality of systems objection being disposed of owing to our system’s recognizing infinitely many membership degrees. So do bodies, too, which enables us to find a solutionto Unger’s sorites concerning ordinary material bodies.
8. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
XVII Congreso Internacional de Historia de la Ciencia (Berkeley)
9. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
José M. Méndez Systems with the converse Ackermann property
abstract | view |  rights & permissions
A system S has the “converse Ackermann property” (C.A.P.) if (A -> B) -> C is unprovable in S whenever C is a propositional variable. In this paper we define the fragments with the C.A.P. of some well-know propositional systems in the spectrum between the minimal and classical logic. In the first part we succesively study the implicative and positive fragments and the full calculi. In the second, we prove by a matrix method that each one of the systems has the C.A.P. Thus, we think the problem proposed in Anderson & Belnap (1975) § 8.12 has been solved.
10. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 1 > Issue: 1
Yosu Yurramendi Datuen analisia eta enuntziatuen logika