Already a subscriber? - Login here
Not yet a subscriber? - Subscribe here

Displaying: 61-80 of 430 documents


notice and news
61. The Leibniz Review: Volume > 26
Ursula Goldenbaum, Donald Rutherford, Julia Jorati The Xth International Leibniz Congress
view |  rights & permissions | cited by
62. The Leibniz Review: Volume > 26
Recent Works
view |  rights & permissions | cited by
63. The Leibniz Review: Volume > 26
Acknowledgments, Subscription Information, Abbreviations
view |  rights & permissions | cited by
64. The Leibniz Review: Volume > 25
News from the Leibniz-Gesellschaft
view |  rights & permissions | cited by
articles
65. The Leibniz Review: Volume > 25
Daniel Garber Robert C. Sleigh, Jr. and Leibniz
view |  rights & permissions | cited by
66. The Leibniz Review: Volume > 25
Maria Rosa Antognazza The Hypercategorematic Infinite
view |  rights & permissions | cited by
67. The Leibniz Review: Volume > 25
Kyle Sereda Leibniz’s Relational Conception of Number
abstract | view |  rights & permissions | cited by
In this paper, I address a topic that has been mostly neglected in Leibniz scholarship: Leibniz’s conception of number. I argue that Leibniz thinks of numbers as a certain kind of relation, and that as such, numbers have a privileged place in his metaphysical system as entities that express a certain kind of possibility. Establishing the relational view requires reconciling two seemingly inconsistent definitions of number in Leibniz’s corpus; establishing where numbers fit in Leibniz’s ontology requires confronting a challenge from the well-known nominalist reading of Leibniz most forcefully articulated in Mates (1986). While my main focus is limited to the positive integers, I also argue that Leibniz intends to subsume them under a more general conception of number.
68. The Leibniz Review: Volume > 25
Paul Lodge True and False Mysticism in Leibniz
abstract | view |  rights & permissions | cited by
The question of Leibniz’s relationship to mysticism has been a topic of some debate since the early part of the 20th Century. An initial wave of scholarship led by Jean Baruzi pre­sented Leibniz as a mystic. However, later in the 20th Century the mood turned against this view and the negative appraisal holds sway today. In this paper I do two things: First I provide a detailed account of the ways in which Leibniz is critical of mysticism; second, I argue that there is, nonetheless, an important sense in which Leibniz should be regarded as an advocate of mysticism. However, the approach that I take does not focus on an effort to overturn the kinds of considerations that led people to reject the views of Baruzi. Instead, I try to reframe the discussion and explore more complex and interesting relationships that exist between mysticism and Leibniz’s philosophical theology than have been articulated previously. Here I draw on some recent discussions of mysticism in the philosophical literature to illuminate Leibniz’s own distinction between “false mysticism” and “true mystical theology” and his assessment of the views of a number of other people who might plausibly be identified as mystics.
book reviews
69. The Leibniz Review: Volume > 25
Mark Kulstad Les Lumières de Leibniz: Controverses avec Huet, Bayle, Regis et More
view |  rights & permissions | cited by
70. The Leibniz Review: Volume > 25
Mogens Lærke La vie selon la raison. Physiologie et métaphysique chez Spinoza et Leibniz
view |  rights & permissions | cited by
71. The Leibniz Review: Volume > 25
Stephen Steward Leibniz’s Principle of Identity of Indiscernibles
view |  rights & permissions | cited by
discussion and notice
72. The Leibniz Review: Volume > 25
Mogens Lærke Leibniz on the Principle of Equipollence and Spinoza’s Causal Axiom
view |  rights & permissions | cited by
73. The Leibniz Review: Volume > 25
Christina Schneider In Memoriam Hans Burkhardt (1936-2015)
view |  rights & permissions | cited by
74. The Leibniz Review: Volume > 25
Recent Works
view |  rights & permissions | cited by
75. The Leibniz Review: Volume > 25
Acknowledgments, Subscription Information, Abbreviations
view |  rights & permissions | cited by
76. The Leibniz Review: Volume > 24
Corrections and References to the Theodicy in Leibniz’s Own Hand
view |  rights & permissions | cited by
articles
77. The Leibniz Review: Volume > 24
Patrick Riley Leibniz’ “Monadologie” 1714-2014
abstract | view |  rights & permissions | cited by
It is well-known that Leibniz ends and crowns the 1714 “Monadologie” with a version of his notion of jurisprudence universelle or “justice as the charity [love] of the wise:” for sections 83-90 of the Vienna manuscript claim that “the totality of all spirits must compose the City of God . . . this perfect government . . . the most perfect state that is possible . . . this truly universal monarchy [which is] a moral world in the natural world”—a moral world of iustitia in which “no good action would be unrewarded” for those “citizens” who “find pleasure . . . in the contemplation of [God’s] perfections, as is the way of genuine ‘pure love.’” But the opening four-fifths of the work offer Leibniz’ theory of “substance” (or monad) viewed as the necessary pre-condition of justice: for “on the knowledge of substance, and in the consequence of the soul, depends the knowledge of virtue and of justice” (to Pierre Coste, 1712). Thus without a complete and correct notion of substance/monad, no complete and correct notion commune de la justice would be conceivable. Hence the entire “Monadologie” can be understood as a theory of justice underpinned by a Grundlegung of moral “monads” or justice-loving rational “substances.” In this connection it is revelatory that Leibniz cites the relevant sections of the 1710 Théodicée in most of the 90 articles of the “Monadologie” (beginning indeed with article #1): for Théodicée (theos-dike) is (Leibniz says) “the justice of God,” and Leibniz makes that justice “appear” in the opening lines of the “Monadologie” (in effect) by referring the reader immediately to Théodicée #10 (“Preliminary Dissertation”) —which relates “im­mortal spirits” to a just God who is cherished through “genuine pure love.” This means that “the justice of God” as “higher love” colors the “Monadologie” instantly. Thus one need not “wait” for sections 83-90 to arrive in order for the “Monadologie” to be(come) a “theory of justice:” it is such ab initio.
78. The Leibniz Review: Volume > 24
Stephen Steward Solving the Lucky and Guaranteed Proof Problems
abstract | view |  rights & permissions | cited by
Leibniz’s infinite-analysis theory of contingency says a truth is contingent if and only if it cannot be proved via analysis in finitely many steps. Some have argued that this theory faces the Problem of Lucky Proof—we might, by luck, complete our proof early in the analysis, and thus have a finite proof of a contingent truth—and the related Problem of Guaranteed Proof—even if we do not complete our proof early in the analysis, we are guaranteed to complete it in finitely many steps. I aim to solve both problems. For Leibniz, analysis is constrained by three rules: an analysis begins with the conclusion; subsequent steps replace a term by (part of) its real definition; and the analysis is finished only when an identity is reached. Furthermore, real definitions of complete concepts are infinitely complex, and Leibniz thinks infinities lack parts. From these observations, a solution to our problems follows: an analysis of a truth containing a complete concept cannot be completed in a finite number of steps—indeed, the first step of the analysis cannot be completed. I conclude by defusing some alleged counterexamples to my account.
79. The Leibniz Review: Volume > 24
Marine Picon Actualism and Analyticity: Leibniz's early thoughts towards a synthesis between Lutheran metaphysics and the foundation of knowledge
abstract | view |  rights & permissions | cited by
Recent scholarship has established that, until the mid-1670s, Leibniz did not hold the possibilist ontology which, in his mature philosophy, provides the foundation for both his account of human freedom and of eternal truth. Concentrating on the Mainz period (1667-1672), this paper examines the conciliation, in those early writings, of an actualist ontology and a conception of necessary truth as analytical. The first section questions the view that Leibniz was educated in a “Platonist” tradition; the second section presents the actualist metaphysics that he adopted in the wake of his teachers; the third section shows how Leibniz could, contrary to those same teachers, hold an analytical view of eternal truth, even without the support of his later possibilist ontology and doctrine of real definitions.
80. The Leibniz Review: Volume > 24
Ohad Nachtomy, Tamar Levanon On Oneness and Substance in Leibniz’s Middle Years
abstract | view |  rights & permissions | cited by
We argue in this paper that Leibniz’s characterization of a substance as “un être” in his correspondence with Arnauld stresses the per se unity of substance rather than oneness in number. We employ two central lines of reasoning. The first is a response to Mogens Lærke’s claim that one can mark the difference between Spinoza and Leibniz by observing that, while Spinoza’s notion of substance is essentially non-numerical, Leibniz’s view of substance is numerical. We argue that Leibniz, like Spinoza, qualifies the substance as “one” primarily in a non-numerical sense, where non-numerical means per se unity or qualitative uniqueness. The second line of reasoning suggests that the term “one” should be understood as a-unity-presupposed-by-multiplicity in two senses: a) externally, in the sense of being presupposed by higher complex structures, such as aggregates, and, b) internally, in the sense of having itself a complex structure. We develop an analogy along these lines between the role the notion of a fundamental unity plays in Leibniz’s view of numbers and his view of substance. In other words, we suggest that looking at the role units play in Leibniz’s view of mathematics can shed some light on the role they play in his metaphysics.