Teaching Philosophy 3:4 453

Computer-Assisted Instruction in Logic: EMIL

JAMES W. GARSON and PAUL MELLEMA

University of Notre Dame

In most logic courses, the student is expected to acquire skills at finding proofs
in some formal system. This learning is important not only in that it provides a
foundation for mastery of the basic concepts of logic, but also because it gives
the student the opportunity to learn some of the practical problems and
strategies involved in creative thinking, particularly the creative thinking
characteristic of mathematics and the sciences.

In the standard sort of course, students’ abilities at finding proofs vary
widely, so that those who do not have an initial knack are severely penalized.
Even when strategies for proof-finding are carefully discussed in class, some
students invariably complain that they cannot do a new problem on their own
in spite of “understanding” the lectures. Part of the problem for these students
is that they cannot convert a verbal explanation of techniques into a flexible
tool for dealing with a new situation. Another problem is their inability to tell
when they have applied the rules of a formal system correctly. They may pro-
ceed for quite some time with incorrect variants of the rules, completely
unaware that anything is wrong.

With a bit of tutoring, most students with these difficulties improve rapid-
ly. If students “think out loud” while attempting a proof, a gentle nudge here
and there often leads to success. If they don’t understand the rules, or simply
haven’t bothered to learn them, guiding them through a proof or two tends to
straighten things out fairly quickly and improves their confidence and motiva-
tion. Just as in teaching most skills, effective strategies involve letting the stu-
dent perform the task under guidance; lecturing on the proper procedure and
telling students to “go home and do likewise” is relatively ineffective.

Of course there are good reasons why tutoring is not widely used in an in-
troductory course in logic. These classes are usually quite large, so tutoring
simply takes too much of the teacher’s time. Because grading exercises in proof-
finding is tedious, teachers tend to give students relatively few exercises that ac-
tually require them to create a proof. Even if students could learn on their own,
they simply do not get enough practice to develop any skill, unless they “catch
on” right away. Very often, the teacher relies on exercises that require a single
answer, such as those that ask the student to fill in the justifications for the lines
of a proof that is already completed. This does acquaint students with the rules,
but it gives them no practice in the art of finding a proof.

© Teaching Philosophy, 1980.

454 GARSON and MELLEMA
Computer Applications

Computers make it possible to simulate the tutoring situation. Students can
enter their proofs at the terminal and the computer can be programmed to see
whether each line of the student’s solution follows from previous lines, and to
describe the difficulty if anything goes wrong. When trouble occurs, the com-
puter can display the programmer’s suggestions about how to proceed, and can
show students what the rules “look like” in case they have forgotten them.
There are a number of programs for teaching logic that incorporate one or
more of these features. (For descriptions of the better known programs of this
kind, see [1], [3], [6].)

This use of computers in education is particularly interesting because it has
begun to depart radically from the multiple-choice format which became
almost paradigmatic of computerized teaching materials. A proof-checking
program does not require the student to come to any pre-selected answer, but to
find a solution by any of a potentially infinite number of lines of attack. In a
sense, the program does not demand an answer, but simply provides an
ongoing check of the student’s progress in achieving a result. It does not de-
mand a set response so much as provide a tool which students can use in their
own way to acquire a skill.

Compared to multiple-choice programs, proof-checking programs make
heavy demands on the computer, the instructor, and the student. The computer
must be provided with routines that interpret the student’s “moves” at the ter-
minal, determine whether they are correct, and respond in an intelligent way.
The student and instructor must familiarize themselves with the procedures for
operating the computer program, and must put up with the inconveniences
caused by having to use a computer which is generally overburdened already,
and which occasionally malfunctions. They must also put up with the inevitable
mistakes a programmer makes in designing the logic teaching system. And yet,
if we are to develop computer teaching systems that provide students with tools
for learning, rather than merely with ongoing multiple-choice examinations, we
must overcome these difficulties. Working our effective strategies for proof-
checking programs can pave the way for developing less authoritarian styles of
computerized education in other areas.

Proof-checkers have been around now for over a decade. Evaluations of
their effectiveness have been consistently positive, yet very few such systems are
actually used by instrucors who did not have a hand in their development. The
purpose of this paper is to describe some of the obstacles to widespread use,
and to suggest ways of overcoming these obstacles. The difficulties we shall
discuss are these:

1. Proof-checking programs tend to restrict the instructor’s choice of rules,
and hence of textbooks.

2. The logic programs now available force students to construct their
proofs from top to bottom, whereas the most natural way to construct a
proof is to begin by deciding how to justify the /ast line.

EMIL 455

3. If hints are available at all, they tend to ignore any progress the student
may already have made. Because they force the student to reproduce the
proof devised by the programmer, alternative approaches receive no en-
couragement.

4. Logic programs tend to be intolerant of typographical errors and of
minor deviations from a rigidly defined input format; this tends to
frustrate students who are not typists.

5. The programming languages available at most colleges and universities
were not designed for writing logic programs.

6. Teachers can rarely count on finding the kind of help they need to get a
program running at their school.

The first four of these obstacles can be surmounted by appropriate pro-
gramming, and we shall sketch the approaches that look most promising to us.
The last two require institutional change.

Restricted Choice of Rules

Proof-checkers generally come with a particular, and sometimes idiosyncratic,
formulation of logic. Any teacher who uses a given program must learn, and
construct the course around, the programmer’s choice of rules. But there is a
wide variety of formulations —one for each of a plethora of logic textbooks on
the market. Given the persistent variations in notation, rules, and teaching
strategies used by logic teachers, it is not reasonable to expect them to adopt a
computer program that forces them to master an entirely new approach, or to
limit candidate texts to those for which proof-checking programs have been
written.

James Garson, working with Paul Mellema and Kook Huber, has written a
proof-checker, named EmiL,' which can handle virtually any known formula-
tion of the rules of first-order logic. The program does not need to be re-
designed to accomodate new rules. The rules for a system are sent as data to the
program. Changing the rules can be done in a few minutes on a computer that
has file capabilities; on systems without such storage facilities, rule changes in-
volve only a simple editing job. New rules can be typed into the program using a
format which is perspicuous and widely used; no knowledge of programming,
or of the internal workings of EMIL, is required. EMIL is presently being used in
logic courses at Notre Dame and Rutgers. The program is capable of providing
simultaneous service to students in several different logic courses, each with its
own distinctive system of rules.

We wish to stress that this generality has simplified the programming task,
rather than complicating it. No matter which rule a student applies at a given
line of the proof, the same subroutine is used to check whether the rule was ap-
plied correctly. This subroutine is not particularly long (about 60 lines of the
language PL/1); it would probably take as much effort to program two or three
relatively complex rules of a specific system of logic. The advantage is that in-

456 GARSON and MELLEMA

dividual rules no longer need to be programmed in piecemeal fashion. Instead,
a more general routine compares the attempted steps with argument forms
stored as data.

Probably the best way to understand EMiL is to run through an example.
Suppose for simplicity that we have just three rules:

HYPOTHESIS MODUS PONENS ADDITION
A
(A —>B) A
A B (AvB)

These rules would be entered to EMIL by the instructor, in the following form:

‘HYP" —1 YA’
‘MP’ 2 ‘A(A —> B)/B’
‘ADD’ 1 ‘A/(Av By

In the first column we have the name the instructor has assigned to the rule (ab-
breviated so as to save the student extra typing at the terminal), followed by a
code number which indicates how many premises the rule has and whether the
rule introduces or discharges hypotheses. The third column contains the pattern
for the rule. If several patterns go with a single rule, as in De Morgan’s Law, the
entry indicates multiple forms for that rule:

‘DM’ 1 {— Av — B)/ — (A&BY
‘DM’ 1 {— A& — B)/ — (A v By

Now suppose a student has gotten this far in a proof: (Here and following
boldface indicates the material that EMIL would print in computer-student ex-
changes.)

1: P&Q HYP
2: (P&Q)—>R HYP

To derive R, by applying MP to lines 1 and 2, when EMIL prompts for line 3, by
printing “3:”, the student replies:

R 1,2 MP

The first thing EMIL does is to scan the instructor’s entries to find the name of a
rule on file. He encounters MP, and so expects two line numbers. He locates
these numbers and looks up the formulas entered on these lines (namely ‘P&Q’
and ‘(P&Q) — > R’), and constructs, in the computer memory, a sequence of
formulas called SEQ:

(P&Q),(P&Q) —> R)/R (SEQ)

The formula to the right of the slash in SEQ is the formula just entered into the
proof, as line 3, namely ‘R’; to the left of the slash are the formulas cited in the
justification for this latest line in the proof. (Outer parentheses added by EMIL

EMIL 457

to make pattern matching routine simpler.) EMIL now checks to see whether the
rule MP has been applied properly at line 3. To do this, he checks to see
whether SEQ “matches” PAT, the pattern of the rule used at this line:

A,A —> B)/B (PAT)

The flow chart for this matching subroutine is shown in Figure 1, and
Figure 2 traces our present example through the flow chart.?

Empty all memory
locations associated
with metavariables.

Store next character
of SEQ in S, of PAT
in P.

Do both
S & P contain
blanks?

Yes DONE
Successful
match

Does
P contain a

metavariable
(eg ‘A’)?

No

Yes

Starting at S, read
the next wff in SEQ Un:,%zg;fm
into memory location match
WFF.
stored in A, the No Put contents of WFF
‘memory location associated into A. %
Nwith the metavariable

Are the
contents of WFF
identical with the
contents of
A?%

Yes

x Here ‘A’ is used for concreteness
and brevity. The long-winded reading
is: ‘the memory location associated

ERROR with whatever metavariable happens
Unsuccessful to be in P at the moment’.
match

Figure 1: The Matching Subroutine

458 GARSON and MELLEMA

Figure 2: The Matching Subroutine (an example)

The numbers under each formula below indicate which symbols EMIL is looking at in
PAT and SEQ at each stage of the matching process.

SEQ: (PG;LQ),((P&Q) —> R)/R
23 4

5 6 78910 11

At each stage emiL is doing the following:

1. Isee ‘A’ in PAT. Memory location A is empty so I load the wff

starting at 1 in SEQ into location A. (A now contains ‘(P&Q)’.)

2. I see ¢, in both SEQ and PAT. These match so on to the next

ones.

These also match.

4. 1 see ‘A’ in PAT. Memory location A is full so I check to see

whether the wff in the SEQ starting at 4 is identical to what is in

A. It is, so I continue.

These match.

Match again.

7. Isee ‘B’ in PAT. Memory location B is empty, so I put the next
wif of SEQ (starting at 7) into B, and continue. (B now contains
‘R’)

8. A match.

9. Another match.

10. I see ‘B’ in PAT. Memory location B contains ‘R’. I check to see
whether the next wff in SEQ is the same as this. It is, so I con-
tinue.

11. No more symbols in PAT or SEQ. I’'m done! SEQ is a correct in-
stance of PAT, and the rule has been applied correctly.

w

.O\UI

Simple additions to the program allow EMIL to handle quantifier rules and
rules of substitution of provable equivalents. For example, the rule of Universal
Specification (or Instantiation, or Elimination) is presented to EMIL as follows:

‘US 1 XA/

Both the X’ and the ‘S’ in this schema are metavariables on a par with the prop-

EMIL 459

ositional metavariables ‘A’, ‘B’, ‘C’, and ‘D’. When the task of matching the stu-
dent’s formulas against this pattern is completed, EMiL checks to see whether
anything is in S. If it is (and it will be if the above pattern has been successfully
matched), EMIL checks to see whether it is the result of substituting some term
for what was in X in the formula in A. In short, the ‘S’ here is shorthand for the
result of substituting some term for all (free) X in A. EMIL keeps a record of
terms used in a proof in order to limit rules like Existential Specification in the
appropriate way.

This method for dealing with the quantifier rules can be generlized to other
forms of substitution. For example, by associating the appropriate code
numbers with “rules of substitution,” the appropriate subroutine can be called
to check whether A and S bear any of a number of relations of substitution. So
rules for substitution of provable equivalents and identical terms can be accom-
modated using the same technique.

Options for Proof Notation

Even when the problem of handling the various formulations of the rules of
logic has been solved, we must still deal with the variations in proof notation.
Fitch systems use vertical lines to keep track of subproof structure (See [2]),
whereas systems modelled after those of Suppes [8] and Lemmon [5] use
dependency lists for that purpose. Some systems for quantification use lines,
others flagged variables, and others still a special rank of terms. These are
mainly variations in what a student expects to see at the terminal, and they are
independent of how the rules are formulated. Designing a system that is
modular across these differences is somewhat more difficult than designing one
that can apply anybody’s set of rules. Nevertheless, this problem should not be
too difficult to solve. There are only a few major approaches to proof notation,
while minor variations within these approaches should be easy to tolerate. The
first versions of EMIL were written using the dependency list format, but James
Garson rewrote a version using the Fitch style of notation without much dif-
ficulty. We are optimistic, then, that by designing three or four separate
systems around the main notational approaches, we can provide any teacher
with a version of EMIL which comes very close to the proof notation of his or her
favorite textbook.

Unnatural Proof Construction

A second major difficulty with available proof checkers is that they force
students to work from the top to the bottom of their proof. The best proof-
finding strategies involve working at the bottom, then the top, then the bottom,
and so on, until the proof “meets” in the middle. Terminals which print on
paper do not allow the student to use a bottom-top-bottom procedure because
it is impossible to type the top and the bottom of a proof on a page, and then go
back to fill in lines in between. Printing terminals thus develop exactly the habit

460 GARSON and MELLEMA

of proof construction that one wants to break, and prevent the student from
practicing the most effective proof-finding strategies. It would be better to ask
that students construct their proofs with pencil and paper, and then enter the
completed proof at the terminal. But then the computer does little more than
grade exercises; the student does not get immediate feedback as each line is con-
structed, and the computer can give no guidance during the process of proof
construction. Since the main problem for most students is finding proofs, the
tutorial function of the computer, which was supposed to be its most valuable
feature, cannot be used.

The best solution to this problem would be to use large graphics terminals,
so that students could write into the top and bottom of their proofs just as they
would with pencil and paper. The trouble with this solution is that graphics ter-
minals, especially those with screens large enough to accommodate fair-sized
proofs, are very expensive and unavailable to students at most colleges.
Another difficulty is that standards for graphics programming languages are
not well enough developed to allow programs written for one computer system
to be transferred to another.

At Notre Dame, we have programmed a feature for EMIL, called GoAL,
which solves part of the problem using standard equipment. If the student
wishes to enter a line at the bottom of his or her proof, he or she indicates this
wish by typing an appropriately large line number (e.g., 99), followed by a col-
on. The terminal responds by spacing over to the right-hand side of the paper,
where it repeats the student’s line number, and then waits for the student to
enter the formula to be derived at that point in the proof. In this way, the “top”
of a developing proof appears on the left of the page, in its natural order, and
the “bottom” of the proof appears on the right of the page, in reverse order.
Here is an example:

1: (P&Q&R HYP

2: 99: 99: P&(Q&R)
2: P&Q ISIMP

3: 98: 98: Q&R

3: 75 75: P

When the student first enters a GoaL formula to the system, it may not be
clear how that formula is to be justified; but as soon as the justification
becomes clear, it may be entered by typing the appropriate line number, again
followed by a colon. This induces the terminal to space over to the right side of
the page, repeat the line number and the formula already entered, and then to
wait for the student to enter the justification. In the example above, the student
will surely know, having entered lines 98 and 75, how line 99 is to be justified.
His or her next move, then, may well be this:

3: 99 99: P&(Q&R) 75, 98 CONJ

Students should probably be encouraged, whenever they enter a new goal for-
mula into the proof, to indicate how that formula will figure in the justification

EMIL 461

of some subsequent line in the proof; a formula is unworthy of the status of a
goal unless it can make some clearly explicable contribution to completion of
the proof.

A student working on a complex proof with the help of GoAL may become
confused, after a time, about the structure of his or her proof, especially since
the goal formulas will appear on the page in (roughly) reverse order. To remedy
this confusion, the student can ask the computer to list his or her proof. The
terminal will respond by printing out all the steps of the proof on the left side of
the page, in their natural order, with ellipsis points separating the “top” of the
proof from the “bottom.” Here is how our example would look:

1: (P&Q)&R HYP
2: P&Q 1SIMP

75: P

98: Q&R
99: P&Q&R) 75,98 CONJ

Of course this is not an ideal way to work; the common terminals type rather
slowly, thus discouraging the student from listing the proof often. Still, it beats
a system where the student is forced into a linear, top-to-bottom pattern of
proof construction, and this is much more economical than use of display ter-
minals.

Inflexibility of Hints

The more valuable aspects of tutoring cannot be duplicated on the computer
unless it is capable of assessing the student’s progress, and offering advice
about how to proceed, if and when the student gets stuck and requests help.
There are two main strategies for doing this. The first, used by BERTIE [6], is
simply to store a completed version of the proof that the student is working on,
and to store comments on the various lines which are intended to help a student
who asks for help after completing that particular line. If the comment on a
particular line proves unhelpful, the student can ask to see the next line of the
stored proof, or indeed any number of lines, up to and including the entire
proof.

This hint strategy requires that a completed proof be stored in the com-
puter, along with appropriate comments, for every problem students will work
on. It also presupposes that there is likely to be only one reasonable sequence of
steps that leads to the conclusion. If students approach a problem in an unusual
way, there may not be enough similarity between their proof and the stored
proof for the computer to be of any help. Finally, it presupposes a top-to-
bottom pattern of proof construction. But very often the very next steps in a

462 GARSON and MELLEMA

proof will not reveal a strategy that leads to success; such strategies must rather
be “explained” with reference to what happens much later on. By restricting at-
tention to the steps of the proof in sequence, this sort of hint routine fails to
help students to appreciate the “global” strategies which require knowledge, not
just of where the proof has been, but also of where it is going. These, we main-
tain, are generally the most useful strategies.

Another technique is to write a program that allows the computer to
generate a solution to the student’s problem, and to recognize standard situa-
tions during the course of that solution. QUINC is an example of a system of this
kind (See [1]). This strategy eliminates the need for storing a proof, with com-
mentary, for each problem to be attempted, since the computer generates its
own solutions. But this strategy runs the risk of generating strange proofs,
which students are unlikely to recapitulate. Also, each formulation of the rules
of logic will require its own custom-tailored program for generating proofs.
The program to generate comments must be very carefully written to avoid
giving misleading advice. Worst of all, this strategy still does not help students
to see global strategies; like the stored-proof strategy, this strategy uses a top-
to-bottom approach to proof construction, and confines itself to giving advice
about the very next step in the proof.

We have programmed EMIL to solve these problems for the propositional
calculus (see Figure 3). Our hint algorithm presupposes a proof-checker that
permits the student to build a “stack” of goal formulas, as illustrated in the
preceding section.

Does goal
stack contain
errors?

Yes Revise and explain.

Mention rule & any

Yes premises already available;

suggest other premise(s)
as new goal(s).

Can top
goal be justified
by a rule otnher
than IP?

Suggest IP; recommend
contradiction which
student should set as

new goal.

Figure 3: The Hint Algorithm

EMIL 463

When the student asks for a hint, our algorithm begins by reviewing the
student’s goal stack for serious errors; if a student is headed in the wrong direc-
tion, the best advice consists in pointing this out, so that the student can try a
different strategy. If, on the other hand, nothing is amiss in the student’s work
thus far, our hint algorithm next looks for some rule, other than indirect proof,
which could be used to justify the top goal on the student’s stack. The
algorithm will mention the first such rule it finds. In addition, it will call the stu-
dent’s attention to any lines in the top of the proof® which can be used, along
with the suggested rule, in justifying the top goal. Finally, if any formula(s)
must be proven before the suggested rule can be applied, the algorithm will list
the missing formula(s) and suggest that the student add it (them) to the top of
the goal stack. All this assumes, of course, that the top goal can be justified
without recourse to indirect proof. If the search for a direct-proof rule should
fail, the algorithm will recommend the appropriate hypothesis for reductio, and
make a suggestion about what contradiction the student should try to prove. A
detailed account of the structure of our hint routine is given in the Appendix.

We want to emphasize what we take to be the principle virtue of our ap-
proach to giving advice. Our advice giver directs the student’s attention not to
the very next line to be entered at the top of the proof, but instead to the bot-
tom of the proof, which contains a list of goals which the student is trying to
achieve. This reinforces the strategy of working backwards, which is highly ef-
fective not only in logic, but in many other problem solving contexts.

Our hint routine is designed primarily for natural deduction systems of
propositional logic, though at present it works well with Pospesel’s version of
predicate logic [7] as well. It would not be particularly appropriate for systems
where subsequent lines of a proof are determined, or very nearly determined,
by the previous lines; the tree systems of Jeffery’s Formal Logic [4] are ex-
amples of this kind of system. In such cases, the hint algorithm could be
simplified immensely, and could concern itself almost entirely with matters
such as the choice of terms in instantiating the quantifiers. Systems such as this
give students more practice in carrying out an algorithm, but much less in
creative problem-solving. Given that such systems are much easier to deal with
on the computer, there is a danger that they wil be more widely adopted as com-
puters are more widely used to teach logic. We say “danger” because it is more
important, in a logic course, to learn creative problem-solving strategies, than
to learn to follow a predetermined set of rules.* We hope that the description of
this hint routine will encourage others to teach systems that give students prac-
tice in this creative process, even if they use a computer.

Troubles for Students

If a program is difficult for the teacher and the student to use, then it will tend
not to be used. Because of poor programming languages (discussed in next sec-
tion), it is annoyingly difficult to program the computer to be flexible about
what the student enters at the terminal. Most students are poor typists, and

464 GARSON and MELLEMA

almost everyone has difficulty adjusting to the rigid format which most
programs require. Designing a system that is gentle with the user, that is, which
accepts and corrects common mistakes, and allows a variety of formats, is dif-
ficult, partly because it is not often clear what the common typing mistakes or
omissions at the terminal are liable to be.

In designing EMiL, we have tried to insure flexibility in a few important
areas. The first is in EMIL’s routine for determining whether a student’s input
formula is well-formed. People are generally poor at writing well-formed for-
mulas. We generally drop the outermost parentheses, put in spaces or use an
implicit hierarchy of connectives to determine grouping, etc. When parentheses
are used, we inevitably forget to match them properly. EMIL’s wff-checker is
designed to tolerate all these errors and more. The program simply fixes the
errors found, and prints back a corrected version if there is a possibility that the
student may not know what emiL takes the formula to be.

For example, if the student types P — > Q) — > R, EMIL assumes the for-
mula in question is (P —> Q) —> R); if P —> Q — > R is typed EMIL
associates to the left: (P — > (Q — > R)); however, if P&Q — > R is typed,
EMIL resolves the parentheses according to the convention that & is grouped
before — >, and so treats this input as (P&Q) — > R). If attempts at repair of
the input fail, EMIL politely indicates the point where the difficulty arose. The
following interaction illustrates this.

2: P-Q HYP
YOUR FORMULA IS NOT WELL FORMED
1 HAD TROUBLE NEAR THE *: P* — Q

The wff-checking routine does a very accurate job of making sense of for-
mulas which are technically ill-formed. We have tested this part of the program
with several people familiar with logic, and EMIL has consistently repaired ill-
formed formulas according to their expectations on what was intended. It is in-
teresting to note that the wff-checker does not involve a lot of elaborate pro-
gramming. It uses a simple stack parser, plus information on the standard
hierarchy used with the connectives.

We also thought it important to build flexibility into the format used to
justify lines in a proof. The version of EMIL which uses dependency lists, allows
the student to enter a new line of a proof in the following sort of format:

3: P->Q 1,2MP /12

This asks EMIL to try to derive (P — > Q) from lines 1 and 2 by modus ponens,
where the dependency list contains assumption lines 1 and 2. But this is only
one way the line might have been typed. The formula may be omitted, in which
case EMIL figures it out for himself (if he can): the slash and the dependency list
may also be omitted, in which case EMIL supplies it. Furthermore, the numbers
1, 2 preceding ‘MP’ may be separated by spaces or a dash (the same is true of
numbers in the dependency list), or they may follow the rule name instead of
preceding it. Finally, spaces between formula, rule name, numbers, and the

EMIL 465

slash are optional, and are only needed to distinguish, for example, the number
twelve (‘12’) from the pair of numbers one and two (‘1 2°). Consequently, all the
following inputs would be accepted by EMIL, and treated as equivalent to our
first example:

3: MP12
3: P —> Ql-2MP/1,2
3 P-—>QMP,1,2,/12

When formula and/or dependency list is missing, and the application of a rule
is successful, EMIL retypes the line and includes the missing information for the
student’s later reference.

EMIL also allows the student to use several names for the same rule. For
example, the student may want to type MODUS PONENS, or — > OUT, in-
stead of MP. This can be done simply by adding new lines to the data file con-
taining the list of rules:

‘MOD’ 2 ‘A,A —> B)/B’
‘—~>0 2 ‘A,(A —> B/B

Because the rule names are abbreviated in the data file, all the student will ac-
tually need to type correctly is ‘MOD’ or ‘— > O’. Extra characters are ignored;
they may without penalty be typed incorrectly, or even omitted altogether.

Some inflexibility remains. The formula (if present) must appear first, and
the dependency list must begin with a slash, and appear last. These limitations
could be removed, but our present programming language (PL/1) makes this
task annoyingly complex. With more sophisticated text-processing languages,
more could be done.

We do not claim to have solved the problem of making a natural activity
out of work at the terminal, but programming the computer to be intelligent
about the student’s input can go a long way toward making computerized logic
programs easier to work with. This is important in promoting their widespread
acceptance.

Programming Languages

Hardly any of the present logic systems will run on many computers. The Stan-
ford program LoGIc is written in SAIL, a language peculiar to that campus. (EMIL
is not in much better shape; he is written in PL/1, which runs only on certain
IBM products.) The authors of BERTIE went to heroic lengths to insure that their
program would work on just about any computer that “understands” BAsiC.
Nevertheless, BERTIE will not run on our IBM 370, because the version of BASIC
available to us (vsBasIC) is simply not designed to handle such a large program
as BERTIE. The reason BERTIE is so long is that the authors had to restrict
themselves to the commands common to virtually every version of Basic. The
resulting language is so impoverished that elaborate programming is required
for the simplest of tasks. A number of attempts have been made to try to stan-

466 GARSON and MELLEMA

dardize programming languages so that programs can be easily “transported,”
but the tendency is to standardize around bare-bones languages, rather than to
provide the standard language with a full complement of programming tools.
The result is that it is extremely difficult to write programs in the standard
language, and even if this is done, there is no guarantee that the resulting pro-
gram will be small enough to run at most campuses.

If this weren’t enough, there is another problem. BASIC and FORTRAN are
presently the most widely used languages, and they are thus prime candidates
for solving the transportation problem. But FORTRAN was designed primarily
for mathematical computation in a research setting, and Basic was developed as
a simplified extension of FORTRAN. The result is that both languages are poor at
handling text, while good at handling numbers. The problem is that unless in-
teraction with students is to be in multiple-choice format, the student’s response
must be treated as text. Since it is so difficult to program the computer to res-
pond appropriately to text, there is a strong tendency to want to adopt the
multiple-choice format when programming in these languages. Of course the
multiple-choice format cannot be used with a proof-checker. Furthermore, the
formulas of logic are text, not numbers, so all the major programming opera-
tions in writing a proof-checker must be carried out using the most primitive
tools of BAsic and FORTRAN. Languages that are good at text processing, such as
LISP, SNOBOL, TRAC, and even APL, are simply not used enough to be widely
available in educational institutions.

What is the solution? For the moment, we think it is to bite the bullet and
write programs in FORTRAN using the ANs standard, thus abandoning virtually
all text manipulation capabilities. This requires skillful programming, and a
taste for tedium. The ultimate solution must be for programmers of educa-
tional materials to demand and get a full variety of text-manipulation com-
mands in the standards for transportable languages.

Troubles for Teachers

Adopting a proof-checker is a bother. It requires finding a program, arranging
for terminal time for the students, teaching them to use it, and handling the in-
evitable problems that crop up with the system. For a teacher who has had no
experience working with computers, the whole prospect can be a bit frighten-
ing, particularly since there is often no one to help out if anything goes wrong
with the program, or if programming changes must be made. Ironically,
students are better off in this respect. Quite a few can program in some
language or other, and many more have had experience working at a terminal,
if only to play computer games like FOOTBALL and STARTREK.

Our present system for disseminating computerized materials encourages
teachers very little. Most teachers have little idea what it is like to work with a
computer program, so they are not likely to commit themselves to use of a par-
ticular program unless they have seen it demonstrated. But demonstrations are
not easy to arrange at a teacher’s campus, since at least minor modifications of

EMIL 467

the program will usually be necessary to get it to run there. It would probably
be better to arrange for demonstrations during annual conventions, since a
single set-up could have a large audience. The main problem, however, is that
given present institutional arrangements, it is not in anyone’s interest to give
demonstrations. Developers of a program are funded, if at all, for develop-
ment. The success of their work is not measured in terms of how widely their
program is adopted. If success is measured at all, it is done by controlled
psychological experiments that show the educational advantage of the system in
the environment where it runs. Once the system has been constructed, and
shown to be educationally effective, its developer turns to something else.

Even when the teacher has been convinced of the desirability of using a
proof-checker, there are more problems to face. To obtain a program, the
teacher will generally make use of coNDUIT, an organization which gathers and
distributes educational programs written in BAsIC and FORTRAN, generally at a
cost of about $50. Programs from cCONDUIT are available on tape or cards, and a
complete listing of the program is supplied, along with fairly good documenta-
tion. The programs supplied are written in “transportable” versions of BAsiC or
FORTRAN, or at least their authors have been strongly encouraged to write pro-
grams according to certain standards.

So conpuit performs an extemely valuable service; and yet the teacher
needs more than conpuiT provides. When the materials arrive, there is still the
need to load the program and fix whatever problems still remain. The teacher
without experience is in no position to change the program, and must seek the
help of someone on campus willing and able to get the program to run, and to
diagnose and fix any problems involved in “fine-tuning” the program to the
needs of the teacher. There are bound to be mistakes, or oversights, or simply
decisions about how the program works that don’t fit well with the teacher’s
methods or philosophy. On most campuses no one is employed to do this, and
so the teacher has to rely on finding a person who is familiar with computers
and willing to donate time.

Few institutions supply teachers with the backup they need to use a pro-
gram in their class. Ideally, the people who supply this support should be the
writers of the program being used, and not someone at the teacher’s campus.
Even with excellent documentation for a program, a person who does not
understand logic, or the strategies used in the program’s construction, is not
likely to be able to do a good job of modifying a program for the teacher.

This suggests a new conception of the role and duties of authors of com-
puterized materials. Part of their job, for which they should be paid at their
usual rate, should consist of consulting with users of their programs. This has
two advantages. First, it provides the support teachers need, and hence im-
proves their motivation to try out the new materials. Second, it provides feed-
back to the designers of the program, feedback that will be of value in improv-
ing the product for everyone who uses it. Too often, programmers of educa-
tional materials presume that they can anticipate the needs and reactions of the
students and teachers. The assumption is that if a program runs, and runs as the

468 GARSON and MELLEMA

designers intended it to, there is nothing more to be done. But if the program is
to be used widely, the question of how it should operate has not been answered,
and won’t be answered, until there is adequate information on how well
students and teachers handle it, and how changes might improve it. Valuable
suggestions for redesign of the program are bound to result from carefully
monitoring the actual use of the program in a real setting. This monitoring,
evaluation, and revision of the program allows it to grow in a way that responds
to people’s reactions to it. Not only is it sure to improve the quality of the pro-
duct, but it also involves the teacher and the students in the ongoing process of
improving the system. As a result, they develop a sense of “ownership” in the
materials they are using, instead of feeling that the program has descended
upon them in an unchallengeable form.

Computerized materials have an advantage over textbooks in this respect.
Editing a program, and putting out a new “edition,” is much less difficult than
re-publishing a book. In fact, we may expect that textbooks will eventually be
stored in digital form, so as to take advantage of the flexibilities that already
exist for computer programs. For the present, however, the danger is that com-
mercial interests will enter the field of computer-assisted instruction, and begin
producing educational programs that will play somewhat the same role as
Cliff’s Notes play now. Such an enterprise may soon be commercially feasible;
already it is possible to buy display terminals with built-in computers for under
$1,000, and there is every indication that costs for this sort of equipment will
continue to drop, perhaps to as little as $100 per unit, paralleling the drop in
prices for pocket calculators.® It will be unfortunate if commercial vendors
come to dominate the field of computerized educational materials, since ven-
dors have little incentive to adjust their programs to the needs of educators,
once they have marketed a half-way workable product. The prospect of com-
mercial intervention lends urgency to the suggestion of the preceding
paragraph, that academic program authors should receive support for the
ongoing revision and maintenance of their products.

Conclusion

We have tried to explain some of the major obstacles to the use of proof-
checkers in teaching logic. The feasibility and value of these systems has already
been demonstrated. The main problem now is to design systems and institutions
that solve enough of the practical problems so that they will be widely adopted.
We need to find ways of communicating the advantages of proof-checkers to
teachers, and to provide the support they need in order to be confident that
their initial investment of time and effort will yield a return. One way to help is
to design systems that are easy to use, and which fit well with what goes on in
the classroom. We hope the discussion of the first four obstacles will help show
how this can be done.

In the last two sections, we have raised issues that apply to the use of com-
puters in education in general: the need to promote wider distribution of

EMIL 469

languages that are suited to the needs of instructional programmers, and the
need to develop institutions that allow communication between program
designers, teachers, and students. At present there is a large body of com-
puterized course material, very little of which is widely used. Part of the ex-
planation is that it is far easier to get funds to develop such material than it is to
get money for developing the skills and institutions we need to make effective
use of these systems. The latter activity does not fall neatly into the category of
research, but rather lies at the interface between teaching and research. Until
colleges and universities feel the need for better programming languages, and
for better communication between teachers and program authors, the develop-
ment of instructional programs will continue to be an “academic” exercise.

Appendix: Details on the Hint Giver

The structure of our Hint Giver falls into three main parts. (See Figure 3). The
first is to evaluate the goals the student has entered at the bottom of the proof
for errors. Our goal-stack evaluation routine (see Figure 4) will in fact check for
four kinds of problems. First, it is a serious error for a student to enter a
formula as a goal, without being able to say exactly how derivation of that
formula will help in completing the proof. We must insist that the student sup-
ply justifications for all goals except the top one or two® on the stack. (As they
are being supplied, these justifications will be checked by the matching
subroutine — Figure 1.)

Once the student has supplied valid justifications for all non-top goals, it
will be clear which goal steps do, and which do not, discharge hypotheses. This
puts us in a position to look for a second kind of serious goal-stack error: plan-
ning the end of a proof in such a way that the final conclusion rests on one or
more hypotheses not given in the statement of the problem. Next comes a check
for an oversight, rather than an error: perhaps there is some easy way to derive
one of the lower goals on the stack, without having to derive the top (few)
goal(s) at all. Finally, it may be that some goal simply does not follow from
assumptions available at its particular spot in the subproof structure, and this is
of course a serious error.’

If there are no errors in the goal stack, then the hint algorithm begins the
second process: the search for a rule, other than indirect proof, which can be
used to derive the goal at the top of the student’s stack (see Figure 5). This
search forms the heart of the hint algorithm, and will make extensive use of a
modified version of the matching subroutine (Figure 1). In searching for hints,
neither the name of the rule, nor the numbers of the lines being operated on,
will be given; rather, these are what we must find, if we can. What we are given
is the conclusion to be derived, and its logical form provides the starting point
for our search. Taking each rule in turn, we check to see whether the conclusion
schema in this particular rule matches the logical form of the top goal on the
stack. If not, then of course this rule cannot be used to justify the top goal, and
we go on to the next rule. (More will have to be said later about what we mean
by “next” here.)

470 GARSON and MELLEMA

Once we find a rule whose conclusion schema is of the appropriate form,
the premise schema(ta) can be matched against lines already derived by the stu-
dent. With many rules, this matching process will be necessary for the genera-
tion of useful advice. Specifically, a match on the conclusion schema will not be

Request justifications
for any non-top
goals that lack them.

Point out & delete all

final (bottom)

goal depend on any Yes

intermediate goals that

provisional
hypothesis?

any non-top
goal already proved,

Yes

depend on such
hypotheses. Delete
justification of final goal.

Point out & remove such

or provable in a
single step?

Do any

goals fail to Yes

> goals, & their ancestors,
from goal stack.

goals, & later justifications

follow from available
assumptions?

DIRECT PROOF
ROUTINE

; Point out & delete all such

which cite them.

Figure 4: Goal-Stack Evaluation Routine

enough in the case of those rules whose premise schemata include metavariables
which do not appear in the conclusion schema. Consider, for example, Con-
structive Dilemma: (A v B), (A —> C), (B —> C)/C. Any goal formula
whatever will match the conclusion schema, C, but until we can determine
which formulas (if any) play the roles of A and B in this proof, we cannot give
any specific advice about which formula(s) the student should try to prove next.

By way of contrast, consider DeMorgan’s Law: (— A& — B)/ — (Av B). A
conclusion match alone is all we need to generate good advice here. If the stu-
dent’s top goal has the form — (A v B), then we know exactly which formula

EMIL

the student would have to use in justifying the top goal using DM.

Test 1

Does top
goal have
logical form required
by next untested
rule?

Test 2_13

any lines
in proof have
logical form required
of premises in
this rule?

Test 3

Are values
determined for all
metavariables used
in this rule?

Are all
missing premises
entailed by available
assumptions?

Mention rule, number of
lines to be cited. suggest
missing premise(s) as

new goal(s).

Figure 5:

No

Have all
rules been tested?

Yes

INDIRECT-PROOF
ROUTINE

Direct-Proof Routine

472 GARSON and MELLEMA

An important function of the premise search, then, is to fix the values of
all the metavariables used in stating the rule being tested. If this cannot be
done, we cannot give clear advice; but success in evaluating the metavariables
cannot by itself guarantee good advice. Suppose, for instance, that a student re-
quests advice in the following situation:

1: P—->S HYP
2: S—>Q HYP
33 —RvQ HYP
4: PvR HYP
5: P->Q HSI1,2
6: 99:

Suppose the direct proof routine is testing MP: (A — > B),A/B. Clearly the top
goal, Q, matches the conclusion schema, B. The premise search would also
show that line S matches the premise schema (A — > B), and this would suffice
to determine the value of the hitherto indeterminate metavariable, A. The miss-
ing premise for MP, then, is P, and one is tempted to recommend that the stu-
dent add P to the top of the goal stack. But while this advice would be clear
enough, it would not be good advice, since P does not follow from the given
premises. Thus the final test in the direct-proof routine must be a test of
whether the advice we are about to give is workable. That is, do the available
assumptions actually entail all the missing premises for the rule being tested?

We can now explain what “next rule” means in Test 1 of Figure 5. It is
necessary to distinguish at least three classes of direct-proof rules, correspon-
ding to three distinct phases in the operation of the direct-proof routine.
DeMorgan’s Law, in the variant mentioned above, is a representative of one im-
portant class of rules. We have already noted one interesting property of DM: if
the conclusion match (Test 1) is successful, then we know immediately, without
a premise match (Test 2), exactly which formula the student would have to cite
in justifying the top goal via DM. But this particular variant of DM (.e.,
(— A& — B)/ — (A v B)) has two other properties of even greater interest.

First, this rule, like other forms of DM, is semantically reversible; this tells
us that if we already know that we can derive a formula of the form — (A v B)
from a given set of assumptions, then the same assumptions can be used to
derive (— A& — B), the premise in this rule. Thus suppose that a student re-
quests advice on how to prove — (S v T), based on some assumptions or other.
In evaluating the goal stack, the hint algorithm will already have verified that
those assumptions really are sufficient to entail — (S v T). The direct-proof
routine will discover that the conclusion schema for DM matches the student’s
top goal. As we saw before, no premise search is needed to determine what the
student needs to prove in order to derive — (S v T) by DM, so Tests 2 and 3 can
be bypassed. But in addition, by virtue of DM’s semantic reversibility, we can
also bypass Test 4: if — (S v T) follows from available premises, then so does
the premise, — S& — T.

Second, this form of DM is what we shall call a complexity-increasing rule.

EMIL 473

By this we mean that students will generally have more difficulty dealing with
its conclusion than with its most complex premise. On its face, this rule reduces
syntactical complexity, but this overlooks the fact that conjunctions are
generally easier to derive, and to work with once derived, than are formulas in-
volving disjunction. Students are likely to find — S& — T easier to prove than
— (S v T). Hence it’s good advice, in this context, to suggest — S& — T as a
new goal.

In our view, a conditional is less complex (i.e., easier to get or work with)
than a disjunction, but more complex than a conjunction. A biconditional is
clearly more complex than a conditional, perhaps about on a par with disjunc-
tions. In EMIL’S notation, the biconditional operator has three characters
(< — >), the conditional two (— >), and the conjunction one (&). Thus the
complexity of a formula, as we see it, can be measured by counting its
characters — with the proviso that the disjunction operator must be counted as
three characters.

The general point about semantically reversible, complexity-increasing
rules is this: Whenever the conclusion schema of such a rule matches the stu-
dent’s top goal, we can confidently advise use of that rule, without having to
check whether the missing premise follows, and without having to search the
top of the proof. Such rules permit us to bypass Tests 2, 3, and 4 in Figure 5.%

But while this is attractive from the standpoint of computing efficiency, it
is not necessarily going to lead to the best advice in all situations. It will cost
computing time, of course, to look at the top of the student’s proof, but if the
student has been making progress, then advice based on information about the
bottom and the top of the proof is likely to be better than advice based only on
information about the bottom of the proof. Also, the student’s confidence may
be subtly bolstered by hints that build on his or her work, and subtly under-
mined by hints that ignore his or her efforts. For these reasons, we believe that
complexity-increasing (hereafter, CI), semantically reversible (SR) rules should
be the last group to be processed by the direct-proof routine.

Before considering CI, SR rules, then, the direct-proof routine should look
at non-SR rules of two kinds: complexity-reducing (CR) rules with more than
one premise, and CI rules with any number of premises. With most rules in this
class, we will need to examine the top of the proof in order to fix the values of
one or more metavariables. (Addition, A/(A v B), is an exception.) Test 4 will
also be necessary; only SR rules can bypass that phase of the direct-proof
routine. Still, certain processing economies are possible in connection with Test
2, and these economies turn out actually to suppress a certain kind of bad ad-
vice which would otherwise be given.

Suppose, for example, that we are testing the rule of modus ponens: A,
(A — > B)/B. No matter what the top goal is, it will have the logical form re-
quired by the conclusion schema of this rule. Moreover, the first premise we
test from the top of the proof will match the premise schema A. We are in
danger, then, of suggesting that the student try to prove (A — > B); advice
which is almost sure to lengthen the proof unnecessarily.

474 GARSON and MELLEMA

We can suppress this bad advice, and at the same time eliminate a fair bit
of processing, by rejecting multi-premise rules of this class whenever no line
from the top of the proof matches the longest premise schema.® This amounts,
in the case of MP, to a refusal to recommend use of this rule except where the
conditional premise is already available. In rules where no longest premise ex-
ists, we shall have to match each premise schema against formulas at the top of
the proof in order to assure good advice. Consider, for example, Constructive
Dilemma: (A v B), A —> C), (B — > C)/C. If the top of the student’s proof
already contains a formula of the form (A v B), we may be justified in sug-
gesting (A — > C) and (B — > C) as new goals (assuming, of course, that these
formulas pass Test 4). But even if no disjunctive premise is available, CD may
still be a good rule to use in justifying the top goal: if (A —> C) and
(B — > Q) are both available, the student should perhaps be sent in pursuit of
(A v B). Thus, there is no one premise schema in CD that must be matched in
order for CD to be a good bet, and an unabridged premise search is required.

So far, we have mentioned CI, SR rules, and non-SR rules which either in-
crease complexity, or else have more than one premise, and reduce complexity.
We turn now to the left-overs: rules whose conclusion schemata are neither
more nor less complex than their most complex premise schema; one-premise
rules that reduce complexity; and, if there are any, SR, CR rules with more than
one premise. These three subclasses have something interesting in common:
they involve premises at least as complex as the conclusions they yield. In
general, then, even if the top goal happens to match the conclusion schema for
one of these rules, we should not suggest that the student add the missing
premise(s) to the top of the goal stack, since these missing premises will be just
as hard to derive, generally speaking, as the formula now on top of the stack.
We recognize that there will be special circumstances in which this will not be
true, and in which the best advice will be to use a “left-over” rule, after deriving
a missing premise. But we believe that such circumstances will rarely arise, and
that they will be costly to detect, in terms of processing time.

Accordingly, we propose to recommend that the top goal be derived by a
“left-over” rule when, but only when, the student has already derived all
necessary premises. Thus Tests 3 and 4 can be passed over when we are proces-
sing “left-over” rules, and Test 2 must be tightened up to require that all needed
premises be found. This class of rules must be processed first, since any advice
involving these rules will be of excellent quality: such advice will tell the student
how to derive the top goal in a single step, without setting any new goals. Figure
6 summarizes this discussion of the phrase “next rule” in Test 1, Figure 5.

Before we turn to the indirect-proof routine, we wish to point out an ad-
ditional processing economy that could be achieved in the direct-proof
routine—at a price. Test 2 promises to be very time-consuming, and some
students may prefer to take over some of the work of premise-searching, in
return for shorter waits for hints. For these students, we plan to build into our
hint algorithm a keyword that will “switch off” Test 2 in certain situations.
First, the switch would eliminate Test 2 from the goal-stack evaluation routine

EMIL 475

(Figure 4). Second, the switch would altogether eliminate consideration of
Class A (“left-over”) rules from the direct-proof routine. Finally, the switch
would cancel the premise search as soon as all metavariables had been
evaluated, so that a formula already derived might be listed as a “missing”
premise. We don’t know how much damage this switch will do to the quality of
advice given by the hint algorithm, but we suspect that premise-searching is one
of the things students do best.

Class definition Processing economies (see Figure 5)

CR rules of one premise, rules Tests 3 and 4 bypassed; Test 2 must
A | that are neither CR nor Cl, and | be tightened up to require finding of
any multi-premise SR, CR rules all needed premises

there may happen to be.

Non-SR rules that are either CR | For multi-premise rules, Test 2 can be
B and multi-premise, or else CI. abbreviated if one premise is longer
than any other.

C SR, Cl rules. Tests 2, 3, and 4 bypassed.

Abbreviations

CR: complexity-reducing

Cl: complexity-increasing
SR: semantically-reversible

Figure 6: Classes of Direct-Proof Rules, in Order of Processing.

We come now, finally, to the “last resort” of proof construction: indirect
proof (Figure 7). Once an assumption for indirect proof has been made, the en-
tailment test (Test 4, Figure 5) becomes useless as a means of discerning and re-
jecting bad advice. Before, we could eliminate some possible “new-goal” sug-
gestions on grounds that the putative new goal would not be derivable from
available premises. But in indirect-proof situations, the available premises en-
tail a contradiction, and consequently they entail any formula we might con-
sider putting forward as a new goal. We know, of course, that we’re looking for
a contradiction, but that still leaves us with infinitely many possible goals, and
clearly some contradictions will be easier to prove than others. How can we
steer the student onto the contradiction which is easiest to prove?

It is unlikely that our indirect-proof routine represents the best answer to
this question; indeed, we hope it will be possible to improve on this routine.
Nonetheless, this routine gives pretty good advice in many indirect-proof situa-
tions, and it may at any rate provide a starting point for an ongoing discussion
of the problem of goal selection in indirect-proof contexts.

After informing the student that indirect proof is called for, the indirect-
proof routine begins working at the proof on its own, using a “scratchpad” that

476 GARSON and MELLEMA

is invisible to the student. First, the routine applies all the CR rules, in all pos-
sible ways, to lines which the student has already derived; the resulting
formulas, if any, are placed on the scratchpad.

Suggest IP;
mention appropriate
hypothesis.

Does
extended proof
contain contradictory
pair of lines

Suggest that student add
first such pair to top of
goal stack.

Yes

Apply CR rules
to new formulas
in scratchpad.

Were any new
formulas added to
scratchpad.

Yes

Does

extended |
proof contain

any negations other
than hypothesis,

List all negations; suggest

Yes that student add one, with

its contradictory, to top of
goal stack.

List simplest formula(s)
in extended proof; suggest
that student add one of
these, and its negation,
to top of goal stack.

Figure 7: Indirect-Proof Routine

Looking now at the extended proof (the top of the student’s proof,
augmented by the scratchpad), the routine searches for a pair of lines, one of
which is the negation of the other. If the routine finds a contradictory pair, it
naturally suggests that the student try to prove that particular contradiction. If
no contradictory pair is found, the routine again tries to add new formulas to

EMIL 477

its scratchpad, using the CR rules. From now on, however, each rule applica-
tion must involve at least one of the formulas that entered the scratchpad
during the previous round of CR applications. (This restriction is intended to
suppress repetitions in the scratchpad.) If any new formulas are added to the
scratchpad in this way, we search the extended proof for their contradictories.

By keeping track of which rules have been applied during the creation of
the scratchpad, we can insure that this process never enters an infinite loop. The
restriction of complexity-reducing rules is intended to guarantee termination,
sooner or later. Of course this limitation may be excessive, leading to premature
termination; perhaps we could improve the quality of our advice by allowing
the use of some non-CR rules, without jeopardizing the finitude of our scratch-
pad. One must steer a course between making the scratchpad too large (infinite,
or finite but garbage-laden), on the one hand, and on the other, of making it
too small, so that it fails to include the most easily provable contradiction of
all.

If and when the iteration ceases, we may still not have found a contradic-
tory pair. In that case, we must content ourselves with giving advice of more
dubious quality. First, we look over the extended proof (barring the hypothesis
for reductio) to see whether any of the formulas in it are negations. If we
discover any negations, we list them all, and suggest that the student try to
prove one of them, together with its contradictory. Should the extended proof
be devoid of negations, we list the class of minimally complex formulas,'® and
suggest that the student prove one of these formulas, along with its negation.

One unfortunate feature of our indirect-proof routine is that is may re-
quire the student to make a choice among several alternative new goals. We
could, of course, make the choice for the student, in some arbitrary way, but
until we can discover some principled basis for making the choice, we believe
the student deserves the opportunity to make his or her own choice — arbitrari-
ly, if need be. At least our indirect-proof routine has the virtue of cutting an
initially infinite set of alternatives down to finite, and hopefully manageable,
size.

References

[1] Falk, A. and Houchard, R. “Computerized Help in Finding Proofs,” (xerox)
Western Michigan University, Kalamazoo, Michigan.

[2] Fitch, F. Symbolic Logic, an Introduction, Ronald Press, 1952.

[3] Goldberg, A. “Computer-Assisted Instruction: The Application of Theorem-
Proving to Adaptive Response Analysis,” Technical Report #203, May 25, 1973, In-
stitute for Mathematical Studies in the Social Sciences, Stanford University, Stanford,
California.

[4] Jeffrey, R. Formal Logic: Its Scope and Limits, McGraw Hill, 1967.

[S] Lemmon, E. J. Beginning Logic, Hacket Publishing Company, 1978.

[6] Moor, J. and Nelson, J. “Computer-Assisted Instruction in Logic: BERTIE,”
Teaching Philosophy 2:1 (Spring 1977), pp. 1-6.

[7]1 Pospesel, H. Predicate Logic, Prentice-Hall, 1976.

[8] Suppes, P. Introduction to Logic, van Nostrand, 1957.

478 GARSON and MELLEMA
Notes

Paul Mellema is primarily responsible for the Appendix of this paper, while James
Garson is primarily responsible for the body of the paper. Thanks to George Thomp-
son for helpful suggestions.

1. We are following the tradition (established by the authors of BerTIE) Of honoring
our heroes in naming emiL for Emil Post. Post showed how to mimic the operation of
any formal system within a universal system. In showing that the universal system
exists, Post sketched a basic strategy to be used in designing a universal proof-checker.
Although emiL’s design departs a good deal from Post’s work, the spirit remains.

2. The matching subroutine may also be useful in checking whether students have
correctly translated an English sentence into logical notation, since it recognizes the
logical form of a wff, regardless of the sentence, or predicate, letters used. A good
translation checker would also check for logical equivalence between the expected pat-
tern and the student’s translation.

3. By “top of the proof,” we mean everything in the proof except goals which are
still pending, and have not as yet been linked, by a justificatory chain, to the starting
assumptions (if any) of the problem.

4. There is another reason for prefering to teach natural deduction systems, apart
from the practice they give in creative thinking. These systems organize a proof in a
way which mirrors the way in which people ordinarily communicate their arguments.

5. Cost could be reduced even further by using a standard TV receiver as the display
device, as has been done by makers of programmed electronic games and household
computers.

6. In the example given in the main body of the paper (“Unnatural Proof Construc-
tions”), goal lines 75 and 98 both had to be entered without justifications.

7. Since first-order logic is undecidable, the test for this error obviously cannot be
extended, with total reliability, to systems of quantificational inference. Still, it would
probably be useful to verify validity of proposed deductions in universes of up to, say,
four individuals.

8. Strictly speaking, there are semantically reversible complexity increasing rules for
which we would need Test 3 to obtain good advice. However, these rules do not appear
in logic text books, and so we will not require Test 3. An example of such a rule is
A&B v —B)/A&(—— Cv — C).

9. There is no need, in this context, to assign special weight to disjunction.

10. Complexity here, defined as before: number of characters, with the disjunction
operator getting triple weight.

James W. Garson and Paul Mellema, Department of Philosophy, University of Notre Dame,
Notre Dame, Indiana 46556

